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Abstract
Symbolic data analysis (SDA) is an emerging area of statistics concerned with under-
standing and modelling data that takes distributional form (i.e. symbols), such as
random lists, intervals and histograms. It was developed under the premise that the
statistical unit of interest is the symbol, and that inference is required at this level.
Here we consider a different perspective, which opens a new research direction in
the field of SDA. We assume that, as with a standard statistical analysis, inference is
required at the level of individual-level data. However, the individual-level data are
unobserved, and are aggregated into observed symbols—group-based distributional-
valued summaries—prior to the analysis. We introduce a novel general method for
constructing likelihood functions for symbolic data based on a desired probability
model for the underlying measurement-level data, while only observing the distribu-
tional summaries. This approach opens the door for new classes of symbol design and
construction, in addition to developingSDAas a viable tool to enable and improve upon
classical data analyses, particularly for very large and complex datasets. We illustrate
this new direction for SDA research through several real and simulated data analyses,
including a study of novel classes of multivariate symbol construction techniques.

Keywords Binned data · Interval data · Likelihoods · Summary statistics · Symbol
design

Mathematics Subject Classification 62H86 · 62R07

1 Introduction

Symbolic data analysis (SDA) is an emerging area of statistics that has immense poten-
tial to become a standard inferential technique in the near future (Billard and Diday
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2003). At its core, it builds on the notion that exploratory analyses and statistical infer-
ences are commonly required at a group level rather than at an individual level (Diday
1988; Billard 2011; Billard and Diday 2006). This is the familiar notion behind hierar-
chical modelling (e.g. Gelman et al. 2013, Chapter 5). For example, the performance
of school and higher level units in standardised testing exams is usually of interest
rather than the performance of the individual students (Rodrigues et al. 2016; Rubin
1981).

SDA explicitly embraces this idea by considering group level distributional sum-
maries (i.e. symbols) as the statistical unit of interest, and then analysing the data at this
summary level (Billard 2011; Billard and Diday 2006). The most common choice of
these summaries is the random interval (or the d-dimensional equivalent, the random
rectangle; throughout we use the term ‘random rectangle’ to include d-dimensional
hyper rectangles). Here, for individual-level observations X1, . . . , Xn ∈ R, the ran-
dom interval is typically constructed as S = (mini Xi ,maxi Xi ) ⊆ R. Quantile-based
intervals have only received little attention (e.g. Hron et al. 2017). Other common
symbol types include random histograms (Dias and Brito 2015; Le-Rademacher and
Billard 2013) and categorical multi-valued variables (Billard and Diday 2006). Under
the SDA framework, the collection of group-level data summaries S1, . . . , Sm ∈ S
are considered the new data “points”, whereby each datum is a distribution of some
kind with an internal distributional structure. Statistical inference is then performed at
the level of the symbols directly, with reference to their distributional forms, and
without any further reference to the underlying measurement-level data. See e.g.
Noirhomme-Fraiture and Brito (2011), Billard (2011) and Billard and Diday (2003)
for a comprehensive overview of symbolic data types and their analysis.

This approach is potentially extremely attractive given present technological trends
requiring the analysis of increasingly large and complex datasets. SDA effectively
states that for many analyses, the high level of computation required for e.g. divide-
and-recombine techniques (e.g. Guha et al. 2012; Jordan et al. 2019; Vono et al. 2019;
Rendell et al. 2020) or subsampling-based techniques (Quiroz et al. 2018; Bardenet
et al. 2014; Quiroz et al. 2019), is not necessary to make inference at the group level.

By aggregating the individual-level data to a much smaller number of group level
symbols m (where m � n), ‘big data’ analyses can be performed cheaply and effec-
tively on low-end computing devices. Recent work by Whitaker et al. (2021) has
shown that SDA can outperform bespoke subsampling techniques for logistic regres-
sion models, in terms of much lower computational overheads for the same predictive
accuracy. Beyond data aggregation, distributional-valued observations can arise nat-
urally through the data recording process, representing underlying variability. This
can include e.g. observational rounding or truncation, which results in imprecise data
known to lie within some interval (Heitjan and Rubin 1991; Vardeman and Lee 2005),
and the elicitation of distributions from experts thought to contain quantities of interest
(Fisher et al. 2015; Lin et al. 2022). In this sense, Schweizer (1984)’s often-quoted
statement that “distributions are the numbers of the future” seems remarkably pre-
scient.

Many SDA techniques for analysing distributional-valued random variables have
been developed (and here we take ‘distributional-valued’ random variables to include
random intervals or random rectangles that have no specific distributional form aside
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from the specified quantiles). These include regression models (Irpino and Verde
2015; Le-Rademacher and Billard 2013), time series (Lin and González-Rivera 2016),
clustering and classification (Whitaker et al. 2021), discriminant analysis (Duarte Silva
and Brito 2015) and Bayesian hierarchical modelling (Lin et al. 2022). Likelihood-
based inference was introduced by Le-Rademacher and Billard (2011) and Brito and
Duarte Silva (2012) with further development and application by Zhang et al. (2020),
Rahman et al. (2022), Lin et al. (2022).

While there have been many successes in the analysis of symbolic data, from a
statistical perspective there are many opportunities for methodological improvement.
Some of these opportunities relate to existing SDA approaches, under which the sta-
tistical unit of interest is the symbol, and where inference is required at this level
(either exploratory or statistical inference). For example, the large majority of SDA
techniques are descriptive and do not permit statistical inference onmodel parameters.
E.g., regression models tend to be fitted by symbolic variants of least squares. Other
opportunities arise, as with the present work, by re-imagining how the ideas behind
SDA can be used to solve modern statistical challenges. Here we assume that, as with
a standard statistical analysis, inference is required at the level of the individual-level
data, but where we deliberately aggregate the individual-level data into symbols prior
to the analysis. Hence, if we can develop a way to perform statistical inference on
the individual-level data when only given the group-level summaries, then we can
potentially perform standard statistical inference for large and complex datasets more
efficiently via these distributional summaries than when directly using the original
data. This alternative perspective on the ideas underlying SDA methodology opens
up a new research direction in the field of SDA. Here, we focus on likelihood-based
inference.

The likelihood approach of Le-Rademacher and Billard (2011), Brito and Duarte
Silva (2012) maps each symbol to a random vector that uniquely defines the symbol,
and then models this via a standard likelihood model. E.g., suppose that Xi j ∈ R is
the value of some process recorded on the i-th second, i = 1, . . . , n = 86,400, of the
j-th day, j = 1, . . . ,m. If interest is in modelling these data as, say, i.i.d draws from
a skew-normal distribution Xi j ∼ SN (μ0, σ0, α0), the likelihood function L(x |θ),
θ ∈ Θ , may then be easily constructed. However, suppose that interval symbols
are now constructed so that S j = (mini Xi j ,maxi Xi j ) ⊆ R is the random interval
describing the observed process range on day j . Due to the equivalence of representing
continuous subsets of R by the associated bivariate vector in this setting (Zhang et al.
2020), the approach of Le-Rademacher and Billard (2011), Brito and Duarte Silva
(2012) constructs a model for the vectorised symbols S1, . . . , Sm , perhaps after a
reparameterisation. For example,

S j ∼ SN2(μ,Σ, α) or S̃ j ∼ SN2(μ,Σ, α),

where S̃ j = ((a+b)/2, log(b−a)) is a typical reparameterisation of S j = (a, b) into
a function of interval mid-point and log range (Brito and Duarte Silva 2012). While
there is inferential value in models of these kind (e.g. Brito and Duarte Silva 2012;
Lin et al. 2022), it is clear that if there is interest in modelling the underlying Xi j as
skew-normal, it is difficult to construct even a loosely equivalent model at the level
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of the symbol S j (or S̃ j ). That is, while the analyst may intuitively construct complex
statistical models at the level of the individual-level data, it is less obvious how to
construct models at the symbolic level and for different symbolic forms.

By design, modelling symbols directly, without specifying a probabilistic model
for the underlying micro-data, only permits inference and predictions at the symbol
level. This is unsatisfactory because predictive inference for the underlyingmicro-data
is often of interest, even if primary focus is on group-level analysis, and as we demon-
strate in Sect. 3.3, ignoring the structure of the micro-data can result in symbolic-level
analyses producing poorer inferential outcomes. Another clear and acknowledged
problem (Kosmelj et al. 2014; Cariou and Billard 2015) is that even though existing
SDA techniques do not focus on the individual-level data, the distribution of this data
within random intervals/rectangles and within histogram bins is typically assumed
to be uniform. Alternatives include the triangular distribution (Le-Rademacher and
Billard 2011; Dias and Brito 2017). When considering that random intervals are typ-
ically constructed by specifying S j = (mini Xi j ,maxi Xi j ), it is almost certain that
the distribution of the underlying data within S j is non-uniform. This implies that any
inferential procedure built on the uniformity assumption (i.e. almost all current SDA
methods) is likely to produce questionable results.

One principled difference between SDA and regular statistical analyses is that the
analysed symbolic data can be constructed by the analyst. This raises the question of
how this should be undertaken. Intuitively, if looking to design, say, a random interval
S j to maximise information about a location parameter, using the sample maximum
and minimum is likely a poor choice as these statistics are highly variable. A more
useful alternative could use e.g. sample quantiles to define the interval. While sample
quantiles have been considered in SDAmethods, they have only been used as a robust
method to avoid outliers that would otherwise dominate the size of a random interval
(Hron et al. 2017). In general, little consideration has been given to the design of
informative symbols.

In this paper we introduce a novel general method for constructing likelihood func-
tions for symbolic data based on specifying a standard statistical model L(X |θ) for
the underlying measurement-level data and then deriving the implied model L(S|θ)

at the symbolic level by considering how S is constructed from x . This construction
assumes that we are in the setting where the symbolic data are created through a data
aggregation process. This provides a way to fit the measurement-level data model
L(X |θ) while only observing the symbol level data, S. It provides both a natural
way of specifying models for symbolic data, while also opening up SDA methods
as a mainstream technique for the fast analysis of large and complex datasets. This
approach naturally avoids making the likely invalid assumption of within-symbol
uniformity, allows inference and predictions at both the measurement data and sym-
bolic data levels, permits symbolic inference using multivariate symbols (a majority
of symbolic analyses are based on vectors of univariate symbols), and can provide a
higher quality of inference than standard SDA techniques. The method recovers some
known models in the statistical literature, as well as introducing several new ones, and
reduces to standard likelihood-based inference for the measurement-level data (so that
L(S|θ) → L(X |θ)) when S → X .
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As a result we demonstrate some weaknesses of current symbol construction
techniques. In particular we establish informational limits on random rectangles con-
structed from marginal minima/maxima or quantiles, and introduce a new class of
quantile-based random rectangles. These alternative symbol variations produce more
efficient analyses than existing symbol constructions, and permit the estimation of
within-symbol multivariate dependencies that were not previously estimable.

The new symbolic likelihood function is presented in Sect. 2with specific results for
random rectangles and histograms. All derivations are relegated to the Appendix. The
performance of thesemodels is demonstrated in Sect. 3 through ameta-analysis of uni-
variate histograms, a simulation study of the inferential performance of an alternative
class of multivariate random rectangle constructions, and an analysis of a large loan
dataset. In all cases, the existing state-of-the-art models and symbolic constructions
are outperformed by the new symbolic model. Section 4 concludes with a discussion.

Throughout this manuscript we adopt the convention that upper case letters X
denote (vector or scalar) random variables, whereas lower case letters x denote their
observed values. We also write matrices (as vectors of random variables) X, x in bold
font.

2 A general construction tool for symbolic likelihoods

2.1 Symbolic likelihood functions

Consider that Ω is a sample space defined on a probability space (Ω,F ,P), and
that each element of Ω is described by a measurable random variable X , defined by
X : Ω → X , and P(X ∈ Y) = P(ω ∈ Ω|X(ω) ∈ Y), for Y ⊂ X . We follow the
standard SDA construction of a class (Billard and Diday 2003) and let the random
variable C : Ω → C denote the class to which an individual belongs. For simplicity
we assume that C = {1, . . . ,m} is finite. Consequently let Ωc = {ω ∈ Ω s.t. C(ω) =
c} ⊆ Ω be the set of all possible outcomes that belong to class c ∈ C, and define Xc :
Ωc → Xc ⊆ X as the random variable that describes them. No assumptions about the
countability ofΩ orΩc aremade since the results presented in thismanuscript hold for
both discrete and continuous random variables. We assume that we have a population
of size N for which the variables X1, . . . , XN are measured and given in vector form
by X = (X1, . . . , XN ). The population is itself decomposed intom sub-populations of
size Nc such that

∑
c∈C Nc = N , corresponding to the groups of individuals belonging

to class c. For each class c ∈ C, we define by Xc = (X1,c, . . . , XNc,c) the vector of
random variables describing the population of class c.

We now consider an interpretation of SDA, where the symbolic random variable
Sc for class c ∈ C is assumed to be the result of the aggregation of the random vector
Xc via some aggregation function πc, so that Sc = πc(Xc) : [Xc]Nc → Sc and
xc �→ π(xc). That is, a symbolic random variable is a statistic which represents a
summary of the information brought by measurement over individuals. The choice of
this summary (and thus of the aggregation function) is critical and we explore this in
later sections. In the following we refer to random variables of the measurement-level
data X as classical random variables. By construction symbolic random variables

123



664 B. Beranger et al.

require knowledge of the underlying classical random variables. Accordingly, this
should also be true when dealing with likelihood functions, particularly if inference
is required at both classical and symbolic levels, but when only information at the
symbolic level is observed.

To construct a symbolic likelihood function, suppose that the classical random
variable X has probability density and distribution functions gX ( · ; θ) and GX ( · ; θ)

respectively, where θ ∈ Θ . Consider a random classical data sample x = (x1, . . . , xn)
of size n < N from the population, and denote by xc = (x1,c, . . . , xnc,c), the collection
of those in class c, where

∑
c∈C nc = n. Similarly let sc = πc(xc) be the resulting

observed symbol obtained through the aggregate function πc and define the symbolic
dataset to be the collection of symbols s = (sc; c ∈ C).

Proposition 1 For the subset xc of x associated with class c ∈ C, the likelihood
function of the corresponding symbolic observation sc = πc(xc) is given by

L(sc;ϑ, θ) ∝
∫

X n
fSc|Xc=zc(sc;ϑ)gX (z; θ)dz, ∀c ∈ C, (1)

where zc ∈ X nc
c is a subset of z ∈ X n, fSc|Xc (·;ϑ) is the conditional density of Sc

given Xc and gX ( · ; θ) is the joint density of X .

We refer to L(sc;ϑ, θ) given in (1) as the symbolic likelihood function. A discrete
version of (1) is easily constructed. Note that by writing the joint density gX ( · ; θ) =
gXc ( · ; θ)gX−c|Xc ( · ; θ), where X−c = X\Xc, then after integration with respect to
x−c = x\xc, equation (1) becomes

L(sc;ϑ, θ) ∝
∫

X nc
c

fSc|Xc=zc (sc;ϑ)gXc (zc; θ)dzc.

This construction method can easily be interpreted: the probability of observing a
symbol sc is equal to the probability of generating a classical dataset under the classical
data model that produces the observed symbol under the aggregation function πc. That
is, we have established a direct link between the user-specified classical likelihood
function L(x|θ) ∝ gX (x; θ) and the resulting probabilistic model on the derived
symbolic data. As a result we may directly estimate the parameters θ of the underlying
classical data model, based only on observing the symbols s.

In the case where there is no aggregation of xc into a symbol, so that π(xc) = xc
and Sc = [Xc]Nc , then fSc|Xc=zc (sc) ≡ fπ(Xc)|Xc=zc(π(xc)) = fXc|Xc=zc (xc) =
δzc (xc), where δzc (xc) is the Dirac delta function, taking the value 1 if zc = xc and
0 otherwise. As a result the symbolic likelihood function reduces to gXc (xc; θ), the
classical likelihood contribution of class c. Under the assumption that the classical data
are independently distributed between classes, so that gX ( · ; θ) = ∏

c∈C gXc( · ; θ),
the associated symbols are also independent and the likelihood of the symbolic dataset
s is given by

L(s;ϑ, θ) =
∏

c∈C
L(sc;ϑ, θ) ∝

∏

c∈C

∫

X nc
c

fSc|Xc=zc (sc;ϑ)gXc (zc; θ)dzc.
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If, further, the observations within a class c ∈ C are independent and identically dis-
tributed, then in the scenario where π(xc) = xc we have L(θ) = ∏n

i=1 gX (xi ; θ).

Because Card(C) = m and typicallym � n, this implies that large computational sav-
ings can bemade through the analysis of symbolic rather than classical data, depending
on the complexity of the classical data likelihood function. The method established
in Proposition 1 specifies a probability model for the micro-data which, combined
with knowledge of the aggregation process π , induces a likelihood function at the
aggregate level. In contrast, the likelihood function defined by Le-Rademacher and
Billard (2011), Brito and Duarte Silva (2012) specifies a probability model directly
on the symbols.

Whilewe do not pursue this further here, we note that the function fSc|Xc (·;ϑ) is not
constrained to be constructed fromDirac functions (such aswhen Sc is fully determined
by Xc), and may be a full probability function. This allows for the incorporation of
randomness in construction of the symbols from the micro-data, such as the random
allocation of themicro-data to different symbols. The parametersϑ are fixed quantities
that determine the structure of how a symbol will be constructed, e.g., the locations
of bins for histogram symbols. While we explore this in Sect. 3 where we introduce a
number of new ideas in symbol construction techniques, there is much scope, beyond
this paper, to explore these ideas further.

In the following subsections, we establish analytical expressions of the symbolic
likelihood function based on various choices of the aggregation function π , which
leads to different symbol types. The performance of each of these models will be
examined in Sect. 3. For clarity of presentation the class index c is omitted in the
remainder of this section as the results presented are class specific.

2.2 Modelling random intervals

The univariate random interval is the most common symbolic form, and is typically
constructed as the range of the underlying classical data e.g. S = (mini Xi ,maxi Xi ).
Here we generalise this to order statistics S = (X(l), X(u)) for indices l ≤ u given their
higher information content. We define an interval-valued symbolic random variable
to be constructed by the aggregation function π where

S = π(X) : RN → S = {(a1, a2) ∈ R
2 : a1 ≤ a2} × N (2)

so that x �→ (x(l), x(u), N ), where x(k) is the k-th order statistic of x and l, u ∈
{1, . . . , N }, l ≤ u arefixed.Taking l = 1, u = N corresponds to determining the range
of the data. (Note that modelling an interval (a1, a2) ∈ R

2 as a bivariate random vector
is mathematically equivalent to modelling it as a subset of the real line (a1, a2) ⊆ R.
See e.g. Zhang et al. 2020). Note that this construction explicitly includes the number
of underlying datapoints N in the interval as part of the symbol, in direct contrast to
almost all existing SDA techniques. This allows random intervals constructed using
different numbers of underlying classical datapoints to contribute to the likelihood
function in relation to the size of the data that they represent. This is not available in
the construction of Le-Rademacher and Billard (2011), Brito and Duarte Silva (2012).
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Lemma 1 Consider a univariate interval-valued random variable S = (sl , su, n) ∈ S,
obtained through (2) and assume that gX (x; θ) = ∏n

i=1 gX (xi ; θ), x ∈ R
n, where gX

is a continuous density function with unbounded support. The corresponding symbolic
likelihood function is then given by

L(sl , su, n; θ) = n!
(l − 1)!(u − l − 1)!(n − u)! [GX (sl; θ)]l−1

× [GX (su; θ) − GX (sl; θ)]u−l−1 [1 − GX (su; θ)]n−u gX (sl; θ)gX (su; θ).

It is worth noting that this expression can also be obtained by evaluating P(Sl ≤
sl , Su ≤ su) = P(X(l) ≤ sl , X(u) ≤ su) and then taking derivatives with respect to
sl and su , and corresponds to the joint distribution of order two statistics. This model
was previously established by Zhang et al. (2020) as a generative model for random
intervals built from i.i.d. random variables.

2.3 Modelling random rectangles

The typical method of constructing multivariate random rectangles from underlying
d-dimensional data X ∈ R

d , d ∈ N is by taking the cross product of each d univariate
random interval described by their marginal minima and maxima (e.g. Neto et al.
2011; Ichino 2011). The number of datapoints underlying this rectangle is often not
used. We improve on this scheme by making use of additional information available
at the time of rectangle construction (Sect. 2.3.1), and then develop several alternative
constructions for random rectangles based on marginal order statistics (Sect. 2.3.2).

2.3.1 Using marginal maxima andminima

While it is in principle possible to identify a small amount of information about the
dependence between two variables summarised by a marginally constructed bounding
box, this information content is very weak, and the direction of dependence is not
identifiable (Zhang et al. 2020). E.g. if n datapoints are generated from a multivariate
distribution and the marginal minimum and maximum values recorded, what can
be said about the correlation strength and direction? We propose that dependence
information canbeobtained if the locations of those datapoints involved in construction
of the bounding rectangle, and the total number of points are known. For the examples
in Fig. 1 (top), if the rectangle is generated from only two points (left panel) one
can surmise stronger dependence than if three points are used (centre), with rectangle
construction using four points (right) producing the weakest dependence. The exact
locations of these bounding points is informative of dependence direction. (We note
that the data points used to construct a multivariate random rectangle are immediately
obtained when constructing the random rectangle in the usual way.)

As such, we define the aggregation function π to incorporate these construction
points (where available) into the definition of the random rectangle as
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Fig. 1 Constructionmethods for bivariate intervals usingmarginal minima/maxima (top panels) ormarginal
order statistics (bottom) Top panels: Illustrative random rectangles constructed from 2 points (high corre-
lation), 3 points (moderate correlation) and 4 points (low/no correlation). Bottom panels: Three alternative
construction methods: marginal only (left panel), sequential nesting (centre; equation (9)) and iterative
segmentation (right; equation (11)). Values in blue (red) denote the number of observations in the area
bounded by blue (red) lines (colour figure online)

S = π(X) : Rd×N → S
= {(a1, a2) ∈ R

2 : a1 ≤ a2}d × {2, . . . ,min(2d, n)} × T × N (3)

so that x �→ (
(x(1),i , x(n),i )i=1,...,d , p, I (p), N

)
, where x = (x1, . . . , xn), x j =

(x j,1, . . . , x j,d)
 and x(k),i is the k-th order statistic of the i-th marginal component
of x. The quantity p represents the number of unique points involved in constructing
the rectangle. The quantity I (p) contains those points that reside in anymarginal vertex
(in 2 dimensions or higher) in the d-dimensional rectangle. (A ‘marginal vertex’ is a
vertex of a lower dimensional marginal rectangle.) In this context a symbol is written
as S = (Smin, Smax, Sp, SIp , N ), where Smin and Smax are respectively the d-vectors
corresponding to the marginal minima and maxima.

Lemma 2 Consider a multivariate random rectangle S ∈ S, obtained through (3) and
assume that gX (x; θ) = ∏n

i=1 gX (xi ; θ), x ∈ R
n×d , where gX is a continuous density

function with unbounded support. Then the symbolic likelihood function is given by
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L(s; θ) = n!
(n − sp)!

[∫ smax

smin

gX (z; θ)dz

]n−sp
× �sp , (4)

where the multivariate integral is taken over the rectangular region defined by smin
and smax, and where �sp is defined as follows. If sp = 2 then sIp = (sa, sb) is the
two co-ordinates of d-dimensional space which define the bounding rectangle, and
�2 = gX (sa; θ)gX (sb; θ). If sp = 2d then sIp = ∅ and

�2d =
d∏

i=1

[
GX−i |Xi=smin,i (smax,−i ; θ) − GX−i |Xi=smin,i (smin,−i ; θ)

]
gXi (smin,i )

×
d∏

i=1

[
GX−i |Xi=smax,i (smax,−i ; θ) − GX−i |Xi=smax,i (smin,−i ; θ)

]
gXi (smax,i ),

(5)

where Xi is the i-th component of X, X−i = X\Xi and similarly for smin,−i , smax,−i ,

smin,i and smax,i , and GX−i |Xi is the conditional distribution function of X−i given Xi .

In (5) the product terms represent the joint distributions of X−i being between smin,−i

and smax,−i given that Xi is equal to smin,i or smax,i . When sp = 2, (5) reduces to
�2d = �2. General expressions for �sp for p �= 2 or 2d can be complex. Simple
expressions are available for sp = 3 when d = 2.

Corollary 1 For a bivariate random rectangle, if sp = 3 then SIp = sc ∈ R
2 is the

co-ordinate of the point defining the bottom-left, top-left, top-right or bottom-right
corner of the rectangle.

In this case, if s̄c is the element-wise complement of sc, i.e. s̄c,i = {smin,i , smax,i }\
{sc,i }, i = 1, 2, then

�3 = gX (sc; θ) ×
2∏

i=1

[
GX−i |Xi=s̄c,i (smax,−i ; θ) − GX−i |Xi=s̄c,i (smin,−i ; θ)

]

×gXi (s̄c,i ; θ). (6)

E.g. if sc = (smin,1, smin,2) is in the bottom-left corner, then s̄c = (smax,1, smax,2).

Thefirst term in (6) is the density of the point in the corner of the rectangle, and the other
terms are the probabilities of the two points on the edges being between two interval
values given that the other component is fixed. Qualitatively similar expressions can
be derived for d-dimensional random rectangles in the cases where sp �= 2 or 2d,
although there is no simple general expression.

2.3.2 Using marginal order statistics

As order statistics are defined in the univariate setting, there are a number of methods
to use fixed vectors of lower l = (l1, . . . , ld)
 and upper u = (u1, . . . , ud)
 order
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statistic values, with 1 ≤ li < ui ≤ N , to define a d-dimensional random rectangle.
The simplest takes the cross product of thed-univariatemarginal quantiles as suggested
by Neto et al. (2011), where the authors indicate that the lower and upper values can
take any pair of interval feature possible. Here the aggregation function π is

S = π(X) : Rd×N → S = {(a1, a2) ∈ R
2 : a1 ≤ a2}d × N (7)

x �→
((
x(li ),i , x(ui ),i

)
i=1,...,d , N

)
. (8)

In this context the symbol is written as S = (Sl , Su, N ), where Sl and Su are respec-
tively the d-vectors corresponding to the marginal lower and upper order statistics.
This process is illustrated in Fig. 1 (bottom left panel) in the d = 2 setting. For
fixed l and u, the observed counts in each region are then known as a function of the
construction (8). The resulting symbolic likelihood function is then

L(s; θ) =
d∏

i=1

L(sli , sui , n; θi )

where L(sli , sui , n; θi ) is as obtained in Lemma 1 using the i-th marginal distribu-
tion with parameter θi ∈ Θ . However, as the construction (8) only contains marginal
information, such a symbol will fail to adequately capture dependence between vari-
ables. As an alternative, we introduce two new order-statistic based representations of
random rectangles that do account for such dependence.

The first, sequential nesting (Fig. 1, bottom centre panel), constructs the order statis-
tics within dimension i conditionally on already being within the random rectangle in
dimensions j < i . The aggregation function π is given by (7) as before, but where
now

x �→
(((

x(li ),i , x(ui ),i
) |{x(l j ), j < x j < x(u j ), j ; j < i})

i=1,...,d
, N

)
. (9)

As before, S = (Sl , Su, N ), but where the known observed counts now lie in different
regions (Fig. 1), and with the additional constraints of 2 ≤ ui+1 ≤ ui − li − 1.

Lemma 3 Consider a multivariate random rectangle S ∈ S, constructed via (9) and
suppose that gX (x; θ) = ∏n

i=1 gX (xi ; θ), x ∈ R
n×d , where gX is a continuous density

function with unbounded support. The symbolic likelihood function is then given by

L(s; θ) ∝ P(sl < X < su)
ud−ld−1dP(X1 < sl,1)dP(X1 < su,1)

d∏

i=1

pi (sl )qi (su),

(10)

where p1(sl ) = P(X1 < sl,1)l1−1, q1(su) = P(X1 > su,1)
n−u1 and for i = 2, . . . , d,

pi (sl ) = P(sl, j < X j < su, j ; j < i |Xi = sl,i )dP(Xi < sl,i )

×P(Xi < sl,i |sl, j < X j < su, j ; j < i)li−1
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qi (su) = P(sl, j < X j < su, j ; j < i |Xi = su,i )dP(Xi < su,i )

×P(Xi > su,i |sl, j < X j < su, j ; j < i)ui−1−ui−li−1−1.

Corollary 2 With d = 2, the symbolic likelihood function in Lemma 3 is given by

L(s; θ) ∝ (
GX (su) − GX (sl )

)u2−l2−1 gX1(sl,1)gX1(su,1)gX2 (sl,2)gX2 (su,2)

× GX1(sl,1)
l1−1 [

1 − GX1(su,1)
]n−u1

[
GX1|X2=sl,2 (su,1) − GX1|X2=sl,2 (sl,1)

]

×
[
GX1|X2=su,2 (su,1) − GX1|X2=su,2 (sl,1)

] [
GX ((su,1, sl,2)) − GX (sl )

]l2−1

× [
GX1(su,1) − GX (su) − GX1 (sl,1) + GX ((sl,1, su,2))

]u1−u2−l1−1
,

where GXi (·) ≡ GXi ( · ; θ) and GXi |X j (·) ≡ GXi |X j ( · ; θ); i �= j respectively denote
the marginal and conditional distribution functions of gX (x; θ).

An alternative to sequential nesting is an iterative segmentation construction (Fig. 1,
bottom right). As before, for fixed vectors l and u, the aggregation function π is given
by (7) but where

x �→
((
x(li ),i |{x j < x(l j ), j ; j < i}, x(ui ),i |{x j > x(u j ), j ; j < i})

i=1,...,d
, N

)
. (11)

Again S = (Sl , Su, N ), but now where Sl,i , the li -th order statistic of the i-th margin,
is restricted to the area where the previous margins j < i are all below their respective
lower (l j -th) order statistic. Similarly, Su,i is restricted to the area where the previous
margins j < i are all above their respective upper order statistic. For fixed l and u
the observed counts are then known (Fig. 1, bottom right) but are attributed to differ-
ent regions than for sequential nesting. Iterative segmentation implies the additional
constraints li+1 < li − 1 and ui+1 < N − ∑i

j=1 u j for i = 1, . . . , d − 1.

Lemma 4 Consider a multivariate random rectangle S ∈ S, constructed via (11)
and suppose that gX (x; θ) = ∏n

i=1 gX (xi ; θ), x ∈ R
n×d , where gX is a continuous

density function with unbounded support. The symbolic likelihood function is then
given by

L(s; θ) ∝ P(sl,1 < X1 < su,1)
u1−l1−1dP(X1 < sl,1)dP(X1 < su,1)

d+1∏

i=2

pi (sl )qi (su),

(12)

where pd+1(sl ) = P(X1 < sl,1, . . . , Xd < sl,d)ld−1, qd+1(su) = P(X1 >

su,1, . . . , Xd > su,d)
n−∑d

i=1 ui and for i = 2, . . . , d

pi (sl ) = P(X j < sl, j ; j < i |Xi = sl,i )dP(Xi < sl,i )

× [
P(X j < sl, j ; j < i) − P(X j < sl, j ; j ≤ i)

]li−li−1−1
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qi (su) = P(X j > su, j ; j < i |Xi = su,i )dP(Xi < su,i )

× [
P(X j > su, j ; j < i) − P(X j > su, j ; j ≤ i)

]ui−1
.

Corollary 3 With d = 2, the symbolic likelihood function in Lemma 4 is given by

L(s; θ) ∝ (
GX1(su,1) − GX1(sl,1)

)u1−l1−1
gX1(sl,1)gX1(su,1)gX2(sl,2)gX2(su,2)

× GX1|X2=sl,2(sl,1)(1 − GX1|X2=su,2(su,1))
[
GX1(sl,1) − GX (sl )

]l2−l1−1

× [
GX2(su,2) − GX (su)

]u2−1
GX (sl )

l2−1

× (
1 − GX1(su,1) − GX2(su,2) − GX (su)

)n−u1−u2 ,

where GXi (·) ≡ GXi ( · ; θ) and GXi |X j (·) ≡ GXi |X j ( · ; θ); i �= j respectively denote
the marginal and conditional distribution functions of gX (x; θ).

When l1 = · · · = ld = 1 and ui = n − 2(i − 1) (so that the marginal min-
ima and maxima are selected), the sequential nesting random interval construction
(9) approximately reduces to the rectangle construction (3) based on univariate
marginal maxima and minima, indicating some degree of construction consistency.
That is, S = (Sl , Su, N ) contains nearly the same information as the symbol
S = (Smin, Smax, Sp, SIp , N ) when Sp = 2d, and so the symbolic likelihood func-
tion (10) approximately reduces to (4). For highly correlated data S = (Sl , Su, N )

is slightly more informative as the lower and upper bounds of each dimension i are
calculated on a set fromwhich the (i−1) lowest and largest observations are removed.
The approximation improves as the correlation decreases until both symbols become
identical when the random variables are completely independent. A similar reduction
cannot be obtained for the iterative segmentation construction.

2.4 Modelling histograms with random counts

Histograms are a popular and typically univariate SDA tool to represent the distribution
of continuous data. They are commonly constructed as a set of fixed consecutive
intervals for which random relative frequencies (or counts) are reported (e.g. Bock
and Diday 2000; Billard and Diday 2006). Following Le-Rademacher and Billard
(2011), a (d-dimensional) histogram-valued random variable may be defined as a set
of counts associated with a deterministic partition of the domain X = R

d . Suppose
that the i-th margin of X is partitioned into Bi bins, so that B1 × · · · × Bd bins are
created inX through the d-dimensional intersections of each marginal bin. Index each
bin by b = (b1, . . . , bd), b j = 1, . . . , B j as the vector of co-ordinates of each bin in
the histogram. Each bin b may then be constructed as

Bb = B1
b1 × · · · × Bd

bd where B j
b j

= (y j
b j−1, y

j
b j

], j = 1, . . . , d,

where for each j , the marginal sequences −∞ < y j
0 < y j

1 < · · · < y j
B j < ∞

are fixed. We assume that all data counts outside of the constructed histogram are
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zero. A d-dimensional histogram-valued random variable is constructed through the
aggregation function π where

S = π(X) : Rd×N → S = {0, . . . , N }B1×···×Bd

x �→ (∑n
i=1 1{xi ∈ B1}, . . . ,∑n

i=1 1{xi ∈ BB}) ,
(13)

where 1 = (1, . . . , 1) and B = (B1, . . . , Bd), and 1 is the indicator function. The
symbol S = (S1, . . . , SB) is a vector of counts,

∑
b Sb = N , where Sb denotes the

frequency of data in bin Bb.

Lemma 5 Consider a multivariate histogram-valued random variable S ∈ S, con-
structed via (13) and suppose that gX (x; θ) = ∏n

i=1 gX (xi ; θ), x ∈ R
n×d , where gX

is a continuous density function with unbounded support over the region defined by
the histogram bins. The symbolic likelihood function is given by

L(s; θ) = n!
s1! · · · sB!

∏

b

(∫

Bb

gX (z; θ)dz

)sb
, (14)

where the integral denotes the probability that data x ∈ X falls in bin Bb under the
model.

In the univariate setting, this multinomial likelihood coincides with the likelihood
function for binned and truncated data introduced by McLachlan and Jones (1988). It
also extends the method of Heitjan and Rubin (1991) who build corrected likelihood
functions for coarsened data, where the authors highlight the need to account for both
the grouping and the stochastic nature of the coarsening.

In the limit as the histogram is reduced to its underlying classical data, the likelihood
(14) reduces to the classical data likelihood. As the number of bins becomes large
each bin of the histogram reduces in size and approaches a single point Bb → x∗

b =
(x∗

b1
, . . . , x∗

bd
) ∈ R

d . More precisely, this means that, as the number of bins gets

large, for each marginal component j , j = 1, . . . , d, the lower bound y j
b j−1 of B j

b j

approaches x∗
b j

from below while the upper bound y j
b j

approaches x∗
b j

from above. In
the limit as the number of bins → ∞, only those n bins for which x∗

b coincides with
the underlying micro data will have a count of 1, while the others will have a count of
0 removing their contribution to the symbolic likelihood function.

Now, since the density gX is assumed continuous we can use the fact that

1

|Bb|
∫

Bb

gX (z; θ)dz → gX (xb),

as the number of bins gets large, implying that the likelihood contribution of the
non-empty bins Bb is then proportional to gX (xb; θ). This is equivalent to specifying
fS|X=z(s;ϑ) = ∏n

i=1 δzi (xi ) in (1). Consequently L(s; θ) ∝ ∏n
i=1 gX (xi ; θ) reduces

to the classical data likelihood function.
Finally, note that when the classical data are only observed on a subset of the domain

X , gX (x; θ) should be truncated and rescaled over the same subdomain.
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2.5 Modelling histograms with random bins

A common alternative to histograms with random counts over fixed bins is construct-
ing histograms with fixed counts within random bins (e.g. Mousavi and Zaniolo 2011;
Ioannidis 2013). Such random histograms can be seen as a generalisation of interval-
valued randomvariables (Sects. 2.2–2.3). In particular, random intervals can be viewed
as histograms with the number of bins ranging from 1 (all margins are intervals cal-
culated from sample minima and maxima; Fig. 1, top) to 3d (all margins are intervals
calculated from order statistics l > 1 and u < n; Fig. 1 bottom left). In the following
we focus on the univariate setting (X = R) since extension to d-dimensions is chal-
lenging. E.g. given a matrix of counts, then a simply constructed grid matching these
counts does not necessarily exist.

For a vector of orders k = (k1, . . . , kB), such that 1 ≤ k1 ≤ · · · ≤ kB ≤ N , a
univariate random histogram is constructed through the aggregation function π where

S = π(X) : RN → S = {(a1, . . . , aB) ∈ R
B : a1 ≤ · · · ≤ aB} × N

x �→ (x(k1), . . . , x(kB ), N ).
(15)

This defines a histogram with bin b located at (sb−1, sb] with fixed count kb − kb−1,
for b = 1, . . . , B + 1, where s0 = −∞, sB+1 = +∞, k0 = 0 and kB+1 = N + 1,
and knowledge that there is an observed data point located at each sb, b = 1, . . . , B.
The symbol S = ((S1, . . . , SB), N ) is a B-vector of order statistics, plus N .

Lemma 6 Consider a univariate random histogram S ∈ S, obtained through (15)
and assume that gX (x; θ) = ∏n

i=1 gX (xi ), x ∈ R
n×d . Then the symbolic likelihood

function is given by

L(s; θ) = n!
B∏

b=1

gX (sb; θ)

B+1∏

b=1

(GX (sb; θ) − GX (sb−1; θ))kb−kb−1−1

(kb − kb−1 − 1)! . (16)

When B = 2, k1 = l and k2 = u with l, u = 1, . . . , n; l < u, then (16) reduces to the
likelihood function in Lemma 1 (see Appendix A.4). Further, under this construction it
is straightforward to show that if B = N then the symbolic likelihood (16) recovers the
classical data likelihood. Specifically this implies kb = b for all b = 1, . . . , B so that
the aggregation function (15) is S = π(X) = ((X(1), . . . , X(n)), N ), kb − kb−1 = 1
for all b and so L(s; θ) ∝ ∏N

b=1 gX (xb; θ).

3 Illustrative analyses

Our symbolic likelihood function resolves many of the conceptual and practical issues
with current SDA methods, opens the door for new classes of symbol design and con-
struction, and positions SDA as a viable tool to enable and improve upon classical
data analyses. In Sect. 3.1 we demonstrate that the proposed symbolic likelihood func-
tion is able to outperform bespoke statistical techniques for analysing datasets used in
medical research. In Sect. 3.2 we explore the ability of random rectangles to contain
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information about thedependence structurebetween the datamargins.We also propose
two novel methods of constructing random rectangles that are able to incorporate this
information, and favourably compare these to standard SDA random rectangle con-
struction techniques which can only provide marginal information. Finally in Sect. 3.3
we provide a direct comparison between the developed methods and the likelihood-
based approach of Le-Rademacher and Billard (2011). Here we demonstrate that, as
might be expected, when one is willing to specify a model at the level of the micro-
data, improved statistical performance can be achieved in comparison to methods that
only specify models at the level of the symbol.

3.1 Effect reconstruction for meta-analyses

In medical research, meta-analyses are often implemented to systematically examine
the clinical effects of certain treatments, and typically use the effect sample mean and
standard deviation from the dataset in each individual study. However it is common
practice that such studies only report certain quantile statistics, namely the sample
minimum (q0), maximum (q4) and the sample quartiles (q1, q2, q3), rather than the
dataset mean and standard deviation required to perform themeta-analysis. As a result,
we have the problem of trying to estimate the sample mean and standard deviation of
a dataset from observed quantiles.

The most sophisticated practiced method to estimate the sample mean was devel-
oped by Luo et al. (2018) based on previous work by Hozo et al. (2005) andWan et al.
(2014), whereby

ˆ̄xL = w1

(
q0 + q4

2

)

+ w2

(
q1 + q3

2

)

+ (1 − w1 − w2)q2, (17)

with w1 = 2.2/(2.2 + n0.75) and w2 = 0.7 − 0.72/n0.55. Based on previous work
by Hozo et al. (2005) and Bland (2015) the best performing estimators of the sample
standard deviation are due to Wan et al. (2014) and Shi et al. (2018), which are
respectively given by

ŝW = 1

2

(
q4 − q0
ζ(n)

+ q3 − q1
η(n)

)

and ŝS = q4 − q0
θ1(n)

+ q3 − q1
θ2(n)

, (18)

where ζ(n) = 2Φ−1
(
n−0.375
n+0.25

)
, η(n) = 2Φ−1

(
0.75n−0.125

n+0.25

)
, θ1(n) = (2 +

0.14n0.6)Φ−1( n−0.375
n+0.25 ), θ2(n) = (2 + 2

0.07n0.6
)Φ−1( 0.75n−0.125

n+0.25 ), and Φ−1 (·) is the
inverse of the standard normal c.d.f. Each estimator in (17) and (18) assumes the
underlying data are normally distributed.

In the context of the symbolic random variables developed in Sect. 2, this set-
ting corresponds to constructing the symbolic variable S defined through (15) with
n = 4Q + 1, Q ∈ N where k = (1, Q + 1, 2Q + 1, 3Q + 1, n) i.e. a histogram
with B = 4 random bins and equal counts. If we make the same assumption of
i.i.d. normality of the underlying data, then maximising the symbolic likelihood (16)
with gX (x; θ) = φ(x;μ, σ) will yield maximum likelihood estimators θ̂ = (μ̂, σ̂ ) ≈
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(x̄,
√

(n − 1)/ns) which provide direct estimates ( ˆ̄x∗, ŝ∗) = (μ̂,
√
n/(n − 1)σ̂ ) of

the sample mean x̄ and standard deviation s of the underlying data. Of course, other
distributional assumptions can easily be made.

Figure 2 illustrates the performance of each estimator compared to the true sample
values (i.e. ( ˆ̄x − x̄0) and (ŝ − s0)) based on data generated from normal (top panels)
and lognormal (bottom) distributions, averaged over 10,000 replicates, and for a range
of sample sizes n. For normal data, the sample mean estimator ˆ̄xL by Luo et al. (2018)
(red) and the symbolic likelihood-based estimator (green) perform comparably (top
left). Identifying performance differences of the sample standard deviation estimators
is much clearer (top right), with the symbolic estimator strongly outperforming the

Fig. 2 Mean difference errors, ( ˆ̄x − x̄0) and (ŝ − s0), of various estimates of the sample mean (left panels)
and standard deviation (right) as a function of sample size n = 4Q + 1, Q = 1, . . . , 50 or 90, for both
normally (top panels) and log-normally (bottom) distributed data. x̄0 and s0 denote the true sample mean
and standard deviation for each dataset. Errors are averaged over T = 10,000 dataset replicates generated
from θ0 = (μ0, σ0) = (50, 17) (normal data) and θ0 = (μ0, σ0) = (4, 0.3) following Hozo et al. (2005)
and Luo et al. (2018). Colouring indicates the SDA estimates (light and dark green), ˆ̄xL (red), ŝW (blue)
and ŝS (purple). Confidence intervals indicate ±1.96 standard errors (colour figure online)
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discipline-standard estimators of Wan et al. (2014) and Shi et al. (2018) (blue and
purple, respectively). The differences are particularly stark for low n. As ŝW and ŝS
substantially overestimate the true standard deviation, their usage will systematically
undervalue the contribution of each study in any larger analysis, potentially weakening
the power of themeta-analysis to detect significant clinical effects. Note that for n = 5,
the symbolic estimator of the sample standard deviation is exact (i.e. zero error) as the
symbolic likelihood (16) reduces to the classical likelihood in this case.

When the sample data are lognormal (bottom panels), both symbolic (light green)
and the industry-standard estimators perform poorly. This is unsurprising given the
common normality assumption. While estimators equivalent to those in (17) and (18)
but for lognormally distributed data could in principle be derived, it is trivial to achieve
this for the symbolic estimator by substituting the lognormal density (or any other
distribution) for gX ( · ; θ) in (16). The resulting sample mean and standard devia-
tion estimators assuming the lognormal distribution are illustrated in dark green. The
lognormal-based symbolic likelihood estimator performance is clearly excellent in
comparison.

One factor influencing the efficiency of the symbolic maximum likelihood estimate
(MLE) is the form and specification of the symbol as a summary representation of
the underlying data. While a histogram with more bins should be more informative
than one with less, for a fixed number of bins, sensible choice of location can result
in increased MLE performance. This idea of symbol design has been largely ignored
in the SDA literature e.g. with random intervals routinely constructed from sample
minima and maxima.

Consider the simplified setting of the univariate random interval S = (sl , su, n)

defined in Lemma 1 constructed using symmetric upper and lower order statistics, and
the associated 2-bin random histogram (15) that results by additionally including the
sample median, q2. I.e. for sample sizes n = 4Q + 1, Q ∈ N we have l = i, u =
n+1−i for the interval and k = (i, 2Q+1, n+1−i) for the histogram.We examine the
efficiency of the symbolicMLE for the symbols defined by i = 1, . . . , 2Q. For each of
t = 1, . . . , T = 10,000 replicate datasets of size n = 21, 81 and 201 (i.e. Q = 5, 20,
50) drawn from a N (μ0, σ0) distribution with (μ0, σ0) = (50, 17), we compute the
rescaled symbolic MLE (μ̂t , σ̃t )where σ̃t = √

n/(n − 1)σ̂t , and calculate the relative
mean square errors (RMSE) defined by

RMSEμ̂ =
∑T

t=1(μ̂t − μ0)
2

∑T
t=1(x̄t − μ0)2

and RMSEσ̃ =
∑T

t=1(σ̃t − σ0)
2

∑T
t=1(st − σ0)2

,

where x̄t and st denote the sample mean and standard deviation of the t-th replicate.
Figure 3 shows the RMSEs as function of the quantile q = (n + 1 − i)/n used

to construct the symbol. As expected, using a histogram (dark lines) provides more
information about μ than the associated random interval (grey), as the extra informa-
tion contained in the median is informative for this parameter. In contrast, the median
provides no information about σ in addition to the two bounding quantiles, for the
normal distribution. Including alternative quantiles would be informative.
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Fig. 3 RMSEμ̂ (left) andRMSEσ̃ (right) as a function of quantile q = (n+1−i)/n for i = 1, . . . , (n+1)/2.
Grey and black lines respectively denote random intervals and histograms. Short-dashed, long-dashed and
solid lines indicate samples of size n = 21, 81 and 201 respectively

The convex shape of each RMSE curve indicates that the prevailing SDA practice
of constructing intervals from sample minima and maxima (i = 1, q = n) is highly
inefficient for parameter estimation. Greater precision for both location and scale
parameters is achieved by using less extreme quantiles, in this setting around the
q = 0.85-0.90 range (balancing optimal minimum RMSE values between the two
parameters). There is also a severe penalty for using too low quantiles when estimating
σ , as the data scale is not easily estimated using overly central quantities. Estimatingμ

is less sensitive in this regard. These conclusions are robust to sample size, n. Overall
this analysis indicates that substantial efficiency gains should be possible in standard
SDA with more informed symbol design.

3.2 Information content in multivariate random rectangles

In Sects. 2.3.1 and 2.3.2 we introduced two new symbolic constructions to increase
the information content within multivariate random rectangles. We now examine the
performance of each of these representations and contrast them with standard SDA
constructions.While we focus on bivariate intervals for clarity, extension of the results
to higher dimensions is immediate.

When constructing random rectangles from marginal minima and maxima,
Lemma 2 and Corollary 1 provide an expression for the symbolic likelihood that
incorporates full knowledge of the number and location of unique points from which
the interval is constructed (e.g. Fig. 1). We denote the resulting likelihood function (4)
by L full(s; θ). Existing SDA definitions of random rectangles do not use this informa-
tion. In its absence, the best likelihood model that can be constructed is by averaging
the likelihood L full over all possible combinations of the unique point constructions,
weighted according to the probability of that configuration arising under the classical
data model. That is,
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L∅(s; θ) =
∑

tp

∑

tIp

L full((smin, smax, tp, tIp , n); θ)P(Sp = tp, SIp = tIp ; θ),

where

P(Sp = tp, SIp = tIp ; θ) =
∫ ∫

L full((a, b, tp, tIp , n); θ)

d∏

i=1

I (ai ≤ bi ) dadb,

(19)

where a = (a1, . . . , ad) and b = (b1, . . . , bd). While not generally viable, below
we estimate the probabilities (19) to high accuracy using Monte Carlo with a large
number of samples, each time L∅ is evaluated. One alternative is to assume each
random rectangle is constructed by themaximum number of unique points (2d), which
is perhaps realistic when the number of points nc underlying a symbol is large and
the dependence between the variables not too strong. We denote the particular case
of L full with Sp = 2d as L2d(s; θ). Here, L2d effectively represents the current state-
of-the-art in SDA methods, L∅ represents the best that can likely be done with the
existing constructions of random rectangles in the SDA literature (although it is likely
impractical), and L full is our construction.

We assume m = 20, 50 classes, for each of which a random sample of size nc =
5, 10, 50, 100 is drawn from a N2(μ0,Σ0) distribution (d = 2) with μ0 = (2, 5)
,
diag(Σ0) = (σ 2

0,1, σ
2
0,2) = (0.5, 0.5) and correlation ρ0 = 0, 0.3, 0.5, 0.7, 0.9. The

m random rectangles are then constructed, retaining the information (sp, sIp ) required
to maximise L full but which is ignored when maximising L∅ and L4. For each of
T = 100 replicate datasets, the symbolic MLE θ̂ = (μ̂, Σ̂) is computed.

Table 1 reports themean and standard deviation of ρ̂ over the replicate datasets under
each likelihood. Themarginal parameters (μ,σ1 andσ2) arewell estimated in each case
(see SupplementaryMaterial B.1). Themain conclusion fromTable 1 is that only L full,
which incorporates full information of the number and location of the unique points
that define the random rectangle, is able to accurately estimate dependence between the
variables. For L4 and L∅ theMLEs are either zero (no dependence can be estimated) or
they are biased upwards. Note that for L full, variability of theMLEmostly increases as
nc increases, and is more variable for lower correlation values. This can be explained
as dependence information is contained in the proportion of rectangles constructed
from 2 and 3 unique points (and their locations). For a fixed correlation, as nc gets
large it is increasingly likely that the rectangles will be generated by 4 unique points,
thereby weakening the dependence information that the sample of random rectangles
can contain. This weakening naturally occurs more slowly for higher correlations, and
so the correlation MLE has greater accuracy and precision for stronger dependence.
I.e. Depending on the number of points, nc, in the random rectangle, the tendency of
the correlation to be underestimated is lower when the strength of the correlation is
higher. As nc → ∞ all rectangles will be generated from 4 unique points, and it will
not be possible to accurately estimate within-rectangle dependence. This effect can
be seen for nc = 1,000 and 100,000 for ρ = 0.3, 0.5, 0.7 but not yet for ρ = 0.9.
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This insight identifies clear limits on the dependence information content that this
(discipline standard) interval construction can possess.

Given the statistical inefficiency of intervals constructed from minima and maxima
(Fig. 3) and their informational limits, a sensible alternative is to construct random
rectangles using marginal order statistics (Sect. 2.3.2), which should be robust to these
limitations. Given that such intervals constructed from independent marginal quantiles
((7) and (8)) will not contain dependence information, we examine the performance
of the sequential nesting (9) and iterative segmentation (11) constructions, for which
we denote the respective likelihood functions as Lsn(s; θ) and L is(s; θ).

For each of T = 100 replicate datasets, we generate m = 20 classes, each con-
structed from n = 60 and 300 draws from a bivariate (d = 2) N2(μ0,Σ0) distribution
withμ0 = (2, 5)
, σ0,1 = σ0,2 = 0.5 and correlation ρ0 = −0.7, 0, 0.7. The symbols
are constructed in four ways: Lsn,x using sequential nesting (9); Lsn,y using sequential
nesting but by exchanging the conditioning order of the x and y margins for symbol
construction; L is,x using iterative segmentation (11); L is,y using iterative segmentation
but again by exchanging the conditioning order of the x and y margins.

Table 2 reports the mean (and standard deviation) of σ1, σ2, ρ under each exper-
imental setup when ρ0 = 0.7 (results for ρ0 = −0.7 and 0 are in Supplementary
Material B.2). Estimates of σ1 and σ2 are unbiased for any rectangle configuration.
However the standard deviations of the estimates are smaller for components which
are conditioned on first in the symbol construction e.g. σ1 is more precisely estimated
by Lsn,x and Lis,x , and σ2 by Lsn,y and Lis,y . Constructing intervals using iterative
segmentation produces more precise estimates of the correlation ρ than using sequen-
tial nesting. This is because iterative segmentation provides more information about
joint upper and lower values of the margins than nested segmentation, which provides
stronger information about the centre of the marginal distributions (Fig. 1). Different
axis constructions (L ·,x or L ·,y) have little effect on the estimates in this case, due
to the symmetry of the underlying Gaussian distribution. As expected, increasing the
amount of data per symbol, nc, leads to more precise estimates of all parameters.

All estimates of ρ are more precise than that obtained using marginal minima
and maxima, which gave a MLE standard deviation of 0.0720 (for nc = 50,m =
20, ρ0 = 0.7 and using L full in Table 1). Similar to Fig. 3, within anymethod of symbol
construction, the choice of order statistics has an impact on the performance of the
MLE. Clearly there is an important optimal symbol design question to be addressed,
that goes beyond the scope of this paper. However, the iterative segmentation approach
appears to be more informative for all parameters, for reasons described above. It is
likely that there are other random rectangle constructions that would be even more
informative.

3.3 Peer-to-peer loan data analysis

We analyse data from the U.S. peer-to-peer lending company LendingClub available
from the Kaggle platform (https://www.kaggle.com/husainsb/lendingclub-issued-
loans). After removing missing values, it comprises 887,373 unsecured personal loans
of between $1k–$40k, issued by individual investors during 2007–2015, each with an
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Table 2 Mean (and standard deviation) of the symbolic maximum likelihood estimate of σ1, ρ and σ2,
over T = 100 replicate bivariate random rectangle datasets containing m = 20 symbols. The symbolic
datasets vary in the number of classical datapoints per symbol (nc), the type of symbol construction (sn =
sequential nesting; is = iterative segmentation), which axis is used first in the symbol construction (x or y),
and the vectors of lower (l) and upper (u) order statistics used. True parameter values are σ0,1 = σ0,2 = 0.5
and ρ0 = 0.7. For Lsn,x , orders (l, u) = ((6, 5), (55, 35)) mean firstly take the (6,55) lower/upper order
statistics on the x-axis, and then the (5, 35) y-order statistics of the remaining nc − 12 observations in the
central x range (Fig. 1, bottom centre). For Lis,x , orders (l, u) = ((6, 3), (55, 3)) mean firstly take the
(6, 55) lower/upper order statistics on the x-axis, the 3-rd y-order statistic of the remaining 5 observations
below the lower x quantile, and the 3-rd y-order statistic of the remaining 5 observations above the upper
x order statistic (Fig. 1, bottom right). For L ·,y the procedure is the same as for L ·,x but starting with the
y-quantiles (the resulting 3 bivariate intervals for e.g. Lsn,x are identical to those for Lsn,y ). The orders
shown are for nc = 60. For nc = 300 the utilised orders are multiplied by 5 so that the intervals are directly
comparable

nc = 60 nc = 300

Orders (l,u) σ1 ρ σ2 σ2 ρ0 σ2

Lsn,x ((6, 5), (55, 35)) 0.4992 0.6933 0.5050 0.4984 0.6772 0.5075

(0.0019) (0.0255) (0.0054) (0.0004) (0.0146) (0.0024)

((16,6), (45,24)) 0.4981 0.6402 0.5043 0.4985 0.6739 0.5177

(0.0021) (0.0273) (0.0107) (0.0005) (0.0115) (0.0048)

((20, 5), (41, 16)) 0.4991 0.6396 0.5054 0.4981 0.6451 0.5141

(0.0027) (0.0256) (0.0129) (0.0006) (0.0127) (0.0059)

Lsn,y ((5,6), (35, 55)) 0.5106 0.6912 0.4974 0.5082 0.6774 0.4998

(0.0061) (0.0339) (0.0016) (0.0024) (0.0156) (0.0004)

((6, 16), (24, 45)) 0.5289 0.6933 0.4986 0.5088 0.6453 0.4994

(0.0123) (0.0239) (0.0021) (0.0049) (0.0129) (0.0004)

((5,20), (16, 41)) 0.5231 0.6699 0.5004 0.5154 0.6702 0.4992

(0.0127) (0.0253) (0.0024) (0.0053) (0.0106) (0.0005)

L is,x ((6, 3), (55, 3)) 0.4993 0.7130 0.4900 0.4984 0.7124 0.4932

(0.0019) (0.0067) (0.0037) (0.0004) (0.0032) (0.0019)

((16,10), (45, 2)) 0.4981 0.7037 0.4806 0.4985 0.7051 0.4866

(0.0021) (0.0039) (0.0064) (0.0005) (0.0011) (0.0025)

((20,7), (41,14)) 0.4993 0.7465 0.4871 0.4981 0.7169 0.4979

(0.0027) (0.0128) (0.0037) (0.0006) (0.0051) (0.0013)

L is,y ((3,6), (3, 55)) 0.4929 0.7133 0.4975 0.4896 0.7151 0.4998

(0.0051) (0.0064) (0.0016) (0.0018) (0.0032) (0.0004)

((10,16), (2, 45)) 0.4868 0.7053 0.4986 0.4848 0.7066 0.4993

(0.0068) (0.0035) (0.0021) (0.0026) (0.0011) (0.0004)

((7,20), (14, 41)) 0.4933 0.7311 0.5004 0.4947 0.7268 0.4993

(0.0040) (0.0115) (0.0023) (0.0016) (0.0057) (0.0005)
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associated grade, from A1 (least risky) to G5 (most risky), based on risk and mar-
ket conditions, which defines the interest rate. To properly balance their investment
portfolio, individual investors need to understand how borrower characteristics relate
to their ability to repay the loan plus interest, as the interest is where the investor
makes their profit. We examine the link between the borrower’s log annual income
(in $US)—taken as an indicator of the borrower’s ability to repay a loan—and loan
grade (i.e. the investment risk) via a highly computational analysis of the full dataset
(providing a gold standard), a symbolic analysis using (13) based on aggregating the
income data in each risk group into a 5-bin histogram, and a reference SDA analysis
following Le-Rademacher and Billard (2011) (denoted LRB).

Denoting Xi j as the log-income for individual j in grade i = 1, . . . , 35,we consider
both normal Xi j ∼ N (μi , σ

2
i ) and skew-normal Xi j ∼ SN (μi , σ

2
i , γi ) models for

each grade (with the skew-normal parameterised in terms of mean μi and variance
σ 2
i ), given that standard likelihood ratio tests identify the presence of asymmetry in

34/35 groups (α = 0.05). Within-grade sample sizes range from 576 (G5) to 56,323
(B3). Coding the ordered grades A1–G5 as the numbers 1–35, each model specifies

μi ∼ T3(c0 + c1i + c2i
2, τ 2) and σ 2

i ∼ IG(α, β), (20)

where Tν(m, v) denotes a t-distribution with mean m, variance v and ν degrees of
freedom, and IG(α, β) the inverse-Gamma distribution with shape α and scale β.
For the skew-normal model we additionally specify γi ∼ N (η, ε) for the skewness
parameter. For the reference LRB analysis, we implement the model (20) where μi

and σ 2
i correspond to the mean and variance of the histogram of the i-th group (Le-

Rademacher and Billard 2011, section 2.3).
Figure 4 presents the fitted group means and variances obtained through each

method. The grade specific means under the Normal (top row) model are uniformly
well estimated. Our symbolic model produces standard errors only slightly larger than
the classical ones, while those from the LRB model are about twice as large. The
means under the skew-Normal (bottom) model are less well estimated, but remain,
for the majority, within the classical 95% confidence band. The right panels highlight
the inability of the LRB method to correctly replicate the classical analysis. This is
essentially because the LRB approach models the variances of a histogram generated
from the underlying data (assuming uniformity within bins), rather than modelling the
variance of the underlying data. However, given the same histograms, our symbolic
approach approximates the classical analysis well.

Bydesign, theLRBapproach cannot discriminate betweennormal and skew-normal
models (theLRBfits in Fig. 4 for bothmodels are the same), unlike our symbolic analy-
sis which approximates the full classical analysis. This means that we are able to make
inference at both the level of the underlying data as well as the symbol level (LRB
is restricted to the latter). This is illustrated for the distribution of loan grade C3 in
Fig. 5. Qq-plots for both models (left panel) suggest the skew-normal model appears
to be a better fit in the upper tail of the log income distribution, and slightly worse
in the lower tail. This could be tested formally. As the LRB approach cannot make
such judgements of model adequacy, it is confined to predictions about the mean and
variance of (histograms constructed from data generated by) this underlying process.
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Fig. 4 Fitted group means and variances (solid lines) when the underlying distribution is Normal (top) and
skew-Normal (bottom), using the classical (red) and symbolic (green) likelihoods and the LRBmodel (blue).
Dashed lines indicate pointwise 95% confidence intervals. Points denote μ̂i and σ̂ 2

i under the classical and
symbolic models, and the sample mean and variance of each grade histogram for the LRB model (colour
figure online)

These predictive distributions are shown in the right panel. Even when considered on
its own terms, the LRBmethod produces less accurate and precise predictions than our
symbolic approach (the dot indicates the observed histogrammean/variance). Beyond
this, our symbolic approach can produce the equivalent predictive distributions for the
sample mean and variance of the underlying predicted data, without first producing
histograms (centre), which is perhaps more useful in an analysis as it captures knowl-
edge of the underlying data generation process. The LRB method cannot produce
these predictions.

Finally, Table 3 provides the mean time to evaluate each likelihood function under
each model, averaged over 1,000 randomly generated parameter vectors. The LRB
analysis is most efficient as it is based on a likelihood with 35 bivariate points. The
classical analysis is efficient for the normalmodel given the available sufficient statistic
for each loan grade, however the the skew-normal likelihood requires iteration over all
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Table 3 Mean (s.e.) likelihood evaluation times (seconds ×10−3) over T = 1,000 parameter vector
replicates, using the loan dataset (first two columns) and simulated data with 35 groups of n = 1,000,000
observations

Normal Skew-normal Skew-normal (n = 1,000,000)

Classical 3.886 (0.478) 90.754 (0.097) 3533.900 (2.472)

New symbolic 1.551 (0.045) 12.721 (0.034) 11.487 (0.030)

LRB 0.498 (0.001) 0.476 (0.001) 0.457 (0.001)

887,373 records. In contrast, our symbolic likelihood (14) requires 6 cdf evaluations
per loan grade. It is slower than the normal classical analysis, but 14 times faster
than the skew-normal classical analysis, with comparable model fit. The symbolic
computational times will remain roughly constant as the dataset size increases (right
column), generating increasingly large computational savings for the skew-normal
model compared to the classical analysis.

This analysis highlights the the differences and similarities between the LRB
approach and our own. The former makes model assumptions and inference at the
symbol level, with no assumptions at the level of the micro-data. Our own approach
makes model assumptions at the level of the micro-data and so can make inference
at both micro-data and symbol levels. When the micro-data model assumptions are
adequate, then our approach will naturally outperform that of LRB. Conversely, if the
micro-data model assumptions are incorrect then using the LRB method may be the
preferred approach. Clearly these two methods are complementary in nature.

4 Discussion

In this article we have introduced a novel framework for the analysis of data that
have been summarised into distributional forms. For the general statistical analyst,
this method opens up the use of SDA as a broadly applicable statistical technique
for analysing large and complex datasets with the potential for large data-storage and
computational savings. Within the SDA setting, the fundamentally different approach
taken—that of specifying probability models for the data underlying a symbol and
deriving the resulting model at the symbolic level, rather than direct model specifica-
tion at the symbolic level—has introduced a new research direction in the field of SDA.
The proposed framework resolves open and new problems including the difficulty of
specifying meaningful models at the symbolic level, avoidance of the routinely vio-
lated uniformity-within-symbols assumption, the ability to perform accurate inference
at the level of the underlying data, including model choice, and providing a means
to construct and analyse multivariate symbols. We have exposed some weaknesses of
current symbol design, and have introduced several alternative, more efficient symbol
constructions.

When the aim of a SDA practitioner is to understand the behaviour of some under-
lying process, we have demonstrated how the design of the aggregation function can
affect the outcome of an analysis. Regardless of whether the symbols were computed
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from micro-data or directly collected, we have shown that keeping details about the
aggregation procedure is of absolute necessity for inference.

While providing a step forwards, our approach is not without some caveats. Most
obviously, the symbolic likelihood function (1) requires enumeration of the integral
over the underlying data space, which may be problematic in high dimensions. For
many standard classes of models, distribution functions GX (x; θ) are available in
closed form. In other cases, numerical or approximate methods may be required, such
as quadrature,Monte Carlo techniques (Andrieu and Roberts 2009), or factorisation of
gX (x; θ) to reduce the dimension of the integral. Alternatively, composite likelihood
solutions (Whitaker et al. 2020) can be considered.

The symbolic likelihood is clearly an approximation of the classical likelihood as it
is based on summary data, and so there will be some information loss. While the accu-
racy of the classical data model can be approached by letting the symbols approach
the classical data (e.g. by letting the number of histogram bins B → ∞), this may not
be viable in practice, and in the extreme (e.g. with huge numbers of bins) the compu-
tational costs could exceed those of the classical analysis. It is therefore of interest,
and the subject of future research, to understand the quality of the approximation. It is
possible that some of the theory supporting approximate Bayesian computation (e.g.
Sisson et al. 2018), which is also based on computation via summary statistics, could
be useful here.

Within this context there is immense scope for optimum symbol design, whereby
symbols are constructed to providemaximal information for a specific or more general
analyses that may be performed in the future. Different symbolic types could be
developed such as continuous distribution-based symbols, which may additionally
enable direct integration of the integral in (1) through conjugacy.

Since Schweizer (1984)’s 35-year old prediction that “distributions are the numbers
of the future”, the explosive emergence of the data-rich biome—the infome—in which
we now reside, clearly substantiates the potential for symbolic data analysis to become
a powerful everyday tool for the statistical analyst. Schweizer (1984)’s future is very
much here.
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A Proofs

A.1 Univariate intervals: Proof of Lemma 1

Based on the aggregation function (2) we have S = (Sl , Su, N ) = (X(l), X(u), N ) and
thus the role of fS|X=z(s;ϑ) in Proposition 1 is to ensure that sl = z(l) and su = z(u).
Consequently we can write

fS|X=z(s;ϑ) = δz(l),z(u)
(sl , su) = δz(l) (sl) δz(u)

(su) ,

so that l − 1 points of z belong to (−∞, sl), one is at sl , u − l − 1 belong to (sl , su),
one is at su and n− u belong to (su,∞). As there are n!/((l − 1)!(u− l − 1)!(n− u)!)
possible combinations to arrange n points in such a way, the likelihood function can
then be written as

L(sl , su, n; θ)

= n!
(l − 1)!(u − l − 1)!(n − u)!

(∫ sl

−∞
gX (z; θ)dz

)l−1 ∫ +∞

−∞
gX (z; θ)δz(sl)dz

×
(∫ su

sl
gX (z; θ)dz

)u−l−1 ∫ +∞

−∞
gX (z; θ)δz(su)dz

(∫ ∞

su
gX (z; θ)dz

)n−u

= n!
(l − 1)!(u − l − 1)!(n − u)! [GX (sl; θ)]l−1 [GX (su; θ) − GX (sl; θ)]u−l−1

× [1 − GX (su; θ)]n−u gX (sl; θ)gX (su; θ),

using the independence between the n replicates X1, . . . , Xn .

A.2 Multivariate intervals: Proof of Lemma 2 and Corollary 1

Consider bivariate intervals for simplicity (with identical arguments providing a full
multivariate extension), so that X is a bivariate random vector with pdf gX ( · ; θ)

and marginal and conditional pdfs respectively denoted by gXi ( · ; θ), i = 1, 2 and
gXi |X j ( · ; θ), i, j = 1, 2; i �= j . The conditional distribution of S given X = z ∈ R

2

is obtained from the aggregation function (3). When Sp = 2, SIp = (sa, sb). Now
sa = (sa1, sa2) and sb = (sb1, sb2) which take values sa = (smin,1, smin,2) and sb =
(smax,1, smax,2) if the rectangle constructed from top right and bottom left points, or
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sa = (smin,1, smax,2) and sb = (smax,1, smin,2) if from the top left, bottom right points.
Then

fS|X=z(s;ϑ) =
⎧
⎨

⎩

δz(1),1,z(1),2,z(n),1,z(n),2

(
sa1, sa2 , sb1 , sb2

)

or
δz(1),1,z(n),2,z(n),1,z(1),2

(
sa1, sa2 , sb1 , sb2

)
.

Straightforwardly, this ensures that two points give the marginal minima and max-
ima and the remaining points are within the interval. There are n(n − 1) possible
combinations to arrange n points in such a way and so the likelihood function is

L(s; θ)

= n(n − 1)

(∫ smax

smin

gX (z; θ)dz

)n−2 ∫

R2
gX (z; θ)δsa (z)dz

∫

R2
gX (z; θ)δsb (z)dz

= n(n − 1)

(∫ smax

smin

gX (z; θ)dz

)n−2

gX (sa; θ)gX (sb; θ).

When Sp = 3 so that a single point SIp = sc = smin defines the bottom left rectangle
corner, then

fS|X=z(s;ϑ)

= δz(1),1,z(1),2(sc)δ(smin,1,smax,1),(smin,2,smax,2)

(
z j,1|z j,2 = smax,2, z j,2|z j,1 = smax,1

)
.

There are n(n − 1)(n − 2) possible combinations to arrange n points such that one
is at a corner, two are on two different edges and the rest are inside the interval. The
likelihood is then

L(s; θ) = n(n − 1)(n − 2)
∫

R2
gX (z; θ)δsmin (z)dz

(∫ smax,1

smin,1

gX1|X2=smax,2 (z1; θ)dz1

)

× gX2 (smax,2; θ)

×
(∫ smax,2

smin,2

gX2|X1=smax,1(z2; θ)dz2

)

gX1(smax,1; θ)

(∫ smax

smin

gX (z; θ)dz

)n−3

= n(n − 1)(n − 2)gX (smin; θ)

(∫ smax

smin

gX (z; θ)dz

)n−3

×
[
GX1|X2=smax,2 (smax,1; θ) − GX1|X2=smax,2 (smin,1; θ)

]
gX2 (smax,2; θ)

×
[
GX2|X1=smax,1(smax,2; θ) − GX2|X1=smax,1(smin,2; θ)

]
gX1(smax,1; θ).

Finally when Sp = 4 then

fS|X=z(s;ϑ) = δ(smin,1,smax,1),(smin,1,smax,1)

(
z j,1|z j,2 = smin,2, z j,1|z j,2 = zmax,2

)

× δ(smin,2,smax,2),(smin,2,smax,2)

(
z j,2|z j,1 = smin,1, z j,2|z j,1 = smax,1

)
,
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and there are n(n − 1)(n − 2)(n − 3) possible combinations to arrange four points on
different edges and the rest inside the interval. The likelihood is then

L(s; θ) = n(n − 1)(n − 2)(n − 3)

(∫ smax

smin

gX (z; θ)dz

)n−4

×
(∫ smax,1

smin,1

gX1|X2=smin,2(z1; θ)dz1

)

gX2(smin,2; θ)

×
(∫ smax,1

smin,1

gX1|X2=smax,2(z1; θ)dz1

)

gX2(smax,2; θ)

×
(∫ smax,2

smin,2

gX2|X1=smin,1(z2; θ)dz2

)

gX1(smin,1; θ)

×
(∫ smax,2

smin,2

gX2|X1=smax,1(z2; θ)dz2

)

gX1(smax,1; θ)

= n(n − 1)(n − 2)(n − 3)

(∫ smax

smin

gX (z; θ)dz

)n−4

× [
GX1|X2=smin,2(smax,1; θ) − GX1|X2=smin,2(smin,1; θ)

]
gX2(smin,2; θ)

× [
GX1|X2=smax,2(smax,1; θ) − GX1|X2=smax,2(smin,1; θ)

]
gX2(smax,2; θ)

× [
GX2|X1=smin,1(smax,2; θ) − GX2|X1=smin,1(smin,2; θ)

]
gX1(smin,1; θ)

× [
GX2|X1=smax,1(smax,2; θ) − GX2|X1=smax,1(smin,2; θ)

]
gX1(smax,1; θ).

A.3 Multivariate histograms with fixed bins: Proof of Lemma 5

As S = π(X) is given by (13), then sb = ∑n
i=1 1{zi ∈ Bb} for b = 1, . . . , B, which

is equivalent to

fS|X=z(s;ϑ) =
B∏

b=1

δ∑n
i=1 1{zi∈Bb} (sb) .

The number of combinations to arrange z1, . . . , zn into the B1 × · · · × BB bins is the
multinomial coefficient n!/∏

b sb!, and sp the likelihood function (1) becomes

L(s; θ)

= n!
s1! · · · sB

∫

Rn×d
δz1(B1) · · · δzs1 (B1) · · · δzn−sB+1(BB) · · · δzn (BB)

n∏

i=1

gX (zi ; θ)dz

= n!
s1! · · · sB

(∫

Rd
gX (z; θ)δz(B1)dz

)s1
· · ·

(∫

Rd
gX (z; θ)δz(BB)dz

)sB

= n!
s1! · · · sB

B∏

b=1

(∫

Bb

gX (z; θ)dz

)sb
.
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A.4 Histograms with fixed counts: Lemma 6

The aggregation function (15) ensures that the B bins are defined as order statistics,
so that the symbol S provides the location of B out of n points, with the number of
points between these fixed and known through k = (k1, . . . , kB). As a consequence
the conditional density fS|X=z(s;ϑ) is

fS|X=z(s;ϑ) =
B∏

b=1

δz(kb)
(sb)

B+1∏

b=1

kb−1∏

j=kb−1

δz( j) ((sb−1, sb)) ,

for which there are n!/∏B+1
b=1 (kb − kb−1 − 1)! possible combinations to arrange n

points. Hence

L(s; θ) = n!
∏B+1

b=1 (kb − kb−1 − 1)!
∫

Rn

(
B∏

b=1

δz(kb)
(sb)

)
B+1∏

b=1

×
⎛

⎝
kb−1∏

j=kb−1

δz( j) ((sb−1, sb))

⎞

⎠
n∏

i=1

gX (zi ; θ)dz

= n!
∏B+1

b=1 (kb − kb−1 − 1)!
B∏

b=1

×
(∫

R

δz (sb) gX (z; θ)dz

) B+1∏

b=1

(∫ sb

sb−1

gX (z; θ)dz

)kb−kb−1−1

= n!
∏B+1

b=1 (kb − kb−1 − 1)!

×
B∏

b=1

gX (sb; θ)

B+1∏

b=1

(GX (sb; θ) − GX (sb−1; θ))kb−kb−1−1 .

B Supplementary Material

B.1 Estimates of the�1,�2,�1 and�2, from Section 3.2

See Tables 4, 5, 6 and 7.
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Table 4 As for Table 1 but for estimates of the mean μ1

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

ρ0 = 0.0 L4 1.999 2.004 2.006 1.998 2.003 1.999 2.000 2.001 1.999 2.002

(0.051) (0.045) (0.035) (0.025) (0.018) (0.031) (0.027) (0.021) (0.015) (0.012)

L∅ 1.999 2.004 2.006 1.998 –a 1.999 2.000 2.001 1.999 –a

(0.051) (0.045) (0.035) (0.025) –a (0.031) (0.027) (0.021) (0.015) –a

Lfull 1.999 2.004 2.006 1.998 2.003 1.999 2.000 2.001 1.999 2.002

(0.051) (0.045) (0.035) (0.025) (0.018) (0.031) (0.027) (0.021) (0.015) (0.012)

0.3 L4 1.995 1.996 1.998 2.000 2.001 1.996 1.999 1.996 1.998 2.001

(0.052) (0.044) (0.034) (0.024) (0.016) (0.034) (0.028) (0.020) (0.016) (0.011)

L∅ 1.995 1.996 1.998 2.000 –a 1.996 1.999 1.996 1.998 –a

(0.053) (0.044) (0.034) (0.024) –a (0.034) (0.028) (0.020) (0.015) –a

Lfull 1.995 1.996 1.998 2.000 2.001 1.996 2.000 1.996 1.998 2.001

(0.053) (0.044) (0.034) (0.024) (0.016) (0.034) (0.028) (0.020) (0.016) (0.011)

0.5 L4 1.995 1.995 1.998 2.000 2.000 1.996 1.999 1.996 1.998 2.001

(0.053) (0.044) (0.034) (0.024) (0.016) (0.035) (0.028) (0.021) (0.016) (0.012)

L∅ 1.995 1.995 1.998 2.000 –a 1.996 1.999 1.996 1.998 –a

(0.054) (0.044) (0.034) (0.024) –a (0.034) (0.028) (0.021) (0.016) –a

Lfull 1.996 1.995 1.998 2.000 2.000 1.996 2.000 1.996 1.998 2.001

(0.054) (0.044) (0.034) (0.024) (0.016) (0.034) (0.028) (0.021) (0.016) (0.012)

0.7 L4 1.994 1.996 1.997 2.001 2.000 1.997 1.999 1.995 1.999 2.001

(0.054) (0.043) (0.034) (0.023) (0.017) (0.035) (0.027) (0.020) (0.017) (0.012)

L∅ 1.994 1.996 1.997 2.001 –a 1.997 1.999 1.995 1.998 –a

(0.055) (0.043) (0.034) (0.023) –a (0.035) (0.028) (0.020) (0.017) –a

Lfull 1.995 1.995 1.998 2.000 2.000 1.997 2.000 1.995 1.998 2.001

(0.054) (0.043) (0.033) (0.023) (0.017) (0.034) (0.027) (0.020) (0.017) (0.012)

0.9 L4 1.993 1.998 1.996 2.000 1.999 1.997 1.999 1.995 1.999 2.001

(0.054) (0.043) (0.033) (0.024) (0.019) (0.035) (0.027) (0.020) (0.018) (0.012)

L∅ 1.993 1.997 1.996 2.000 –a 1.997 1.999 1.996 1.999 –a

(0.055) (0.044) (0.033) (0.024) –a (0.035) (0.027) (0.019) (0.018) –a

Lfull 1.994 1.998 1.998 1.999 2.000 1.997 2.001 1.996 1.999 2.001

(0.054) (0.041) (0.032) (0.022) (0.018) (0.035) (0.026) (0.019) (0.017) (0.011)

Table 5 As for Table 1 but for estimates of the mean μ2

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

ρ0 = 0.0 L4 4.993 5.000 4.997 5.002 4.998 4.998 5.000 4.996 5.001 5.000

(0.053) (0.045) (0.032) (0.027) (0.018) (0.034) (0.026) (0.018) (0.019) (0.012)
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Table 5 continued

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

L∅ 4.993 5.001 4.997 5.002 –a 4.998 5.000 4.996 5.001 –a

(0.053) (0.045) (0.032) (0.027) –a (0.035) (0.026) (0.018) (0.019) –a

Lfull 4.993 5.001 4.997 5.002 4.998 4.998 5.000 4.997 5.001 5.000

(0.053) (0.046) (0.032) (0.027) (0.018) (0.034) (0.026) (0.018) (0.019) (0.012)

0.3 L4 4.999 5.001 5.004 4.997 4.999 5.000 5.002 5.001 5.000 5.001

(0.053) (0.045) (0.032) (0.023) (0.018) (0.033) (0.028) (0.017) (0.017) (0.011)

L∅ 4.999 5.001 5.004 4.997 –a 5.000 5.002 5.002 5.000 –a

(0.053) (0.045) (0.032) (0.023) –a (0.033) (0.027) (0.017) (0.017) –a

Lfull 4.999 5.001 5.004 4.997 4.999 5.000 5.003 5.001 5.000 5.001

(0.053) (0.045) (0.032) (0.023) (0.018) (0.033) (0.027) (0.017) (0.017) (0.011)

0.5 L4 4.998 5.001 5.004 4.996 4.999 5.000 5.002 5.001 5.001 5.000

(0.053) (0.047) (0.032) (0.024) (0.018) (0.033) (0.028) (0.018) (0.017) (0.012)

L∅ 4.998 5.001 5.004 4.996 –a 5.000 5.002 5.001 5.001 –a

(0.053) (0.046) (0.032) (0.024) –a (0.033) (0.027) (0.018) (0.017) –a

Lfull 4.999 5.001 5.005 4.996 4.999 5.000 5.002 5.002 5.001 5.000

(0.052) (0.046) (0.032) (0.024) (0.018) (0.032) (0.027) (0.018) (0.017) (0.012)

0.7 L4 4.997 5.001 5.003 4.996 4.998 5.000 5.001 5.001 5.001 5.000

(0.053) (0.047) (0.032) (0.024) (0.018) (0.033) (0.028) (0.018) (0.018) (0.012)

L∅ 4.997 5.001 5.003 4.996 –a 5.000 5.001 5.001 5.001 –a

(0.053) (0.047) (0.032) (0.024) –a (0.033) (0.028) (0.018) (0.018) –a

Lfull 4.998 5.001 5.004 4.996 4.998 5.000 5.002 5.001 5.001 5.000

(0.052) (0.046) (0.031) (0.024) (0.018) (0.032) (0.027) (0.018) (0.017) (0.012)

0.9 L4 4.995 5.001 5.000 5.000 4.998 4.999 5.000 5.000 5.002 4.999

(0.053) (0.047) (0.031) (0.024) (0.018) (0.034) (0.028) (0.017) (0.017) (0.011)

L∅ 4.994 5.001 5.000 5.000 –a 4.999 5.000 5.000 5.002 –a

(0.054) (0.048) (0.032) (0.024) –a (0.034) (0.028) (0.017) (0.017) –a

Lfull 4.995 5.002 5.002 4.999 4.999 4.999 5.002 5.000 5.002 5.000

(0.052) (0.045) (0.029) (0.021) (0.018) (0.033) (0.027) (0.018) (0.016) (0.011)

Table 6 As for Table 1 but for estimates of the standard deviation σ1

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

ρ0 = 0.0 L4 0.247 0.247 0.250 0.250 0.251 0.247 0.247 0.249 0.250 0.250

(0.039) (0.029) (0.015) (0.008) (0.004) (0.024) (0.018) (0.009) (0.006) (0.002)

L∅ 0.249 0.247 0.250 0.250 –a 0.248 0.247 0.249 0.250 –a

(0.039) (0.029) (0.015) (0.008) –a (0.024) (0.018) (0.009) (0.006) –a
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Table 6 continued

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

Lfull 0.247 0.247 0.250 0.250 0.251 0.247 0.247 0.249 0.250 0.250

(0.039) (0.029) (0.015) (0.008) (0.004) (0.024) (0.018) (0.009) (0.006) (0.002)

0.3 L4 0.250 0.255 0.248 0.250 0.250 0.246 0.251 0.249 0.250 0.250

(0.044) (0.031) (0.014) (0.009) (0.005) (0.026) (0.018) (0.008) (0.005) (0.003)

L∅ 0.253 0.255 0.248 0.250 –a 0.249 0.251 0.249 0.250 –a

(0.044) (0.031) (0.014) (0.009) –a (0.026) (0.018) (0.008) (0.005) –a

Lfull 0.250 0.255 0.248 0.250 0.250 0.246 0.251 0.249 0.250 0.250

(0.043) (0.031) (0.014) (0.009) (0.005) (0.026) (0.018) (0.008) (0.005) (0.003)

0.5 L4 0.251 0.256 0.248 0.251 0.250 0.248 0.252 0.249 0.250 0.250

(0.043) (0.031) (0.013) (0.008) (0.004) (0.025) (0.018) (0.008) (0.005) (0.003)

L∅ 0.257 0.255 0.248 0.251 –a 0.252 0.252 0.249 0.250 –a

(0.045) (0.030) (0.013) (0.008) –a (0.026) (0.018) (0.008) (0.005) –a

Lfull 0.250 0.255 0.248 0.251 0.250 0.247 0.251 0.249 0.250 0.250

(0.042) (0.030) (0.013) (0.008) (0.004) (0.025) (0.018) (0.008) (0.005) (0.003)

0.7 L4 0.253 0.256 0.248 0.251 0.251 0.250 0.253 0.249 0.250 0.250

(0.042) (0.029) (0.013) (0.008) (0.004) (0.025) (0.019) (0.008) (0.004) (0.003)

L∅ 0.259 0.255 0.248 0.251 –a 0.258 0.252 0.249 0.250 –a

(0.043) (0.029) (0.013) (0.008) –a (0.025) (0.018) (0.008) (0.004) –a

Lfull 0.249 0.255 0.248 0.251 0.251 0.247 0.251 0.249 0.250 0.250

(0.041) (0.029) (0.012) (0.008) (0.004) (0.024) (0.018) (0.008) (0.004) (0.003)

0.9 L4 0.260 0.258 0.248 0.251 0.251 0.258 0.256 0.249 0.251 0.250

(0.041) (0.029) (0.013) (0.008) (0.004) (0.024) (0.020) (0.008) (0.005) (0.003)

L∅ 0.257 0.253 0.247 0.251 –a 0.253 0.251 0.249 0.251 –a

(0.040) (0.027) (0.013) (0.008) –a (0.022) (0.018) (0.008) (0.005) –a

Lfull 0.249 0.253 0.248 0.251 0.251 0.248 0.251 0.249 0.251 0.250

(0.039) (0.027) (0.012) (0.008) (0.004) (0.023) (0.018) (0.008) (0.004) (0.003)

Table 7 As for Table 1 but for estimates of the standard deviation σ2

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

ρ0 = 0.0 L4 0.251 0.251 0.250 0.251 0.251 0.251 0.251 0.250 0.250 0.251

(0.038) (0.029) (0.013) (0.009) (0.005) (0.023) (0.019) (0.008) (0.005) (0.003)

L∅ 0.253 0.251 0.250 0.251 –a 0.253 0.251 0.250 0.250 –a

(0.039) (0.029) (0.013) (0.009) –a (0.023) (0.019) (0.008) (0.005) –a

Lfull 0.251 0.251 0.250 0.251 0.251 0.251 0.251 0.250 0.250 0.251

(0.038) (0.028) (0.013) (0.009) (0.005) (0.023) (0.019) (0.008) (0.005) (0.003)

0.3 L4 0.250 0.247 0.250 0.251 0.251 0.254 0.250 0.251 0.251 0.250

(0.032) (0.026) (0.011) (0.009) (0.004) (0.024) (0.019) (0.007) (0.005) (0.003)
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Table 7 continued

m = 20 m = 50

nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

L∅ 0.254 0.247 0.250 0.251 –a 0.257 0.250 0.251 0.251 –a

(0.033) (0.026) (0.011) (0.009) –a (0.025) (0.020) (0.007) (0.005) –a

Lfull 0.250 0.246 0.250 0.251 0.251 0.253 0.250 0.251 0.251 0.250

(0.033) (0.026) (0.011) (0.009) (0.004) (0.024) (0.019) (0.007) (0.005) (0.003)

0.5 L4 0.252 0.247 0.250 0.251 0.251 0.255 0.250 0.251 0.251 0.250

(0.033) (0.027) (0.011) (0.009) (0.004) (0.024) (0.020) (0.007) (0.005) (0.002)

L∅ 0.257 0.247 0.250 0.251 –a 0.259 0.250 0.251 0.251 –a

(0.034) (0.027) (0.011) (0.009) –a (0.025) (0.020) (0.007) (0.005) –a

Lfull 0.250 0.247 0.250 0.251 0.251 0.253 0.250 0.251 0.251 0.250

(0.033) (0.027) (0.011) (0.009) (0.004) (0.024) (0.020) (0.007) (0.005) (0.002)

0.7 L4 0.254 0.249 0.250 0.251 0.251 0.257 0.252 0.251 0.251 0.251

(0.033) (0.028) (0.011) (0.008) (0.004) (0.024) (0.020) (0.007) (0.005) (0.003)

L∅ 0.260 0.248 0.250 0.251 –a 0.264 0.251 0.251 0.251 –a

(0.035) (0.028) (0.011) (0.008) –a (0.024) (0.020) (0.007) (0.005) –a

Lfull 0.250 0.247 0.250 0.251 0.251 0.253 0.250 0.251 0.251 0.251

(0.033) (0.027) (0.011) (0.008) (0.004) (0.024) (0.020) (0.007) (0.005) (0.003)

0.9 L4 0.260 0.253 0.251 0.252 0.251 0.262 0.255 0.251 0.251 0.251

(0.036) (0.030) (0.011) (0.008) (0.004) (0.024) (0.021) (0.007) (0.005) (0.003)

L∅ 0.257 0.248 0.249 0.252 –a 0.257 0.250 0.250 0.251 –a

(0.035) (0.028) (0.011) (0.008) –a (0.022) (0.019) (0.007) (0.005) –a

Lfull 0.249 0.248 0.250 0.252 0.251 0.252 0.250 0.251 0.251 0.251

(0.034) (0.028) (0.011) (0.008) (0.004) (0.023) (0.019) (0.007) (0.005) (0.003)

B.2 Estimates of (�1,�,�2), from Section 3.2

See Tables 8 and 9.

Table 8 As for Table 2 but with ρ0 = −0.7

nc = 60 nc = 300

Orders (l,u) σ1 ρ σ2 σ1 ρ σ2

Lsn,x ((6, 5), (55, 35)) 0.4974 −0.6912 0.5106 0.4998 −0.6596 0.5040

(0.0124) (0.2625) (0.0472) (0.0060) (0.2790) (0.0410)

((16,6), (45,24)) 0.4986 −0.6933 0.5289 0.4994 −0.6606 0.5144

(0.0164) (0.1854) (0.0949) (0.0075) (0.2146) (0.0856)

((20,5), (41,16)) 0.5004 −0.6699 0.5231 0.4993 −0.6790 0.5201

(0.0184) (0.1963) (0.0987) (0.0080) (0.1753) (0.0919)
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Table 8 continued

nc = 60 nc = 300

Orders (l,u) σ1 ρ σ2 σ1 ρ σ2

Lsn,y ((5,6), (35, 55)) 0.4979 −0.6423 0.4993 0.5006 −0.6405 0.4984

(0.0394) (0.2486) (0.0148) (0.0364) (0.2746) (0.0061)

((6, 16), (24, 45)) 0.5060 −0.6447 0.4981 0.5223 −0.6726 0.4985

(0.0859) (0.2168) (0.0162) (0.0910) (0.2231) (0.0078)

(5, 20), (16, 41)) 0.5054 −0.6396 0.4991 0.5141 −0.6451 0.4981

(0.0999) (0.1981) (0.0206) (0.1018) (0.2205) (0.0101)

Lis,x ((6,3), (55, 3)) 0.4975 −0.7133 0.4929 0.4999 −0.7133 0.4896

(0.0121) (0.0497) (0.0393) (0.0060) (0.0472) (0.0320)

((16, 10), (45, 2)) 0.4987 −0.7325 0.4966 0.4994 −0.7215 0.4983

(0.0162) (0.0932) (0.0277) (0.0075) (0.1051) (0.0248)

((20, 7), (41, 14)) 0.5004 −0.7108 0.4869 0.4993 −0.7128 0.4771

(0.0180) (0.0363) (0.0444) (0.0080) (0.0275) (0.0453)

Lis,y ((3, 6), (3, 55)) 0.4900 −0.7130 0.4993 0.4915 −0.7127 0.4984

(0.0288) (0.0517) (0.0147) (0.0326) (0.0447) (0.0061)

((10, 16), (2, 45)) 0.4915 −0.7327 0.4982 0.4955 −0.7284 0.4985

(0.0228) (0.1020) (0.0163) (0.0238) (0.0999) (0.0077)

((7, 20), (14, 41)) 0.4802 −0.7155 0.4990 0.4850 −0.7096 0.4981

(0.0424) (0.0335) (0.0205) (0.0401) (0.0253) (0.0101)

Table 9 As for Table 2 but with ρ0 = 0

nc = 60 nc = 300

Orders (l, u) σ1 ρ σ2 σ1 ρ σ2

Lsn,x ((6,5), (55, 35)) 0.4980 0.0183 0.5235 0.4998 −0.0191 0.5216

(0.0126) (0.4156) (0.0322) (0.0059) (0.3888) (0.0301)

((16,6), (45, 24)) 0.4968 0.0670 0.5329 0.5001 −0.0172 0.5307

(0.0157) (0.3490) (0.0612) (0.0076) (0.3375) (0.0572)

((20,5), (41, 16)) 0.4957 0.0847 0.5394 0.4990 −0.0018 0.5355

(0.0186) (0.3747) (0.0551) (0.0099) (0.3671) (0.0508)

Lsn,y ((5,6), (35, 55)) 0.5252 0.0024 0.4983 0.5235 0.0261 0.4995

(0.0412) (0.4303) (0.0142) (0.0306) (0.4018) (0.0058)

((6, 16), (24, 45)) 0.5382 −0.0048 0.4983 0.5359 0.0240 0.4986

(0.0532) (0.3863) (0.0151) (0.0558) (0.3647) (0.0063)

((5, 20), (16, 41)) 0.5343 −0.0024 0.5005 0.5434 0.0080 0.4984

(0.0586) (0.3645) (0.0174) (0.0569) (0.3855) (0.0089)
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Table 9 continued

nc = 60 nc = 300

Orders (l, u) σ1 ρ σ2 σ1 ρ σ2

Lis,x ((6,3), (55, 3)) 0.4980 −0.0048 0.4856 0.4998 0.0008 0.4838

(0.0126) (0.0519) (0.0546) (0.0059) (0.0205) (0.0584)

((16, 10), (45, 2)) 0.4968 −0.0353 0.4777 0.5001 −0.0260 0.4881

(0.0157) (0.0828) (0.0520) (0.0076) (0.0653) (0.0514)

((20,7), (41, 14)) 0.4957 0.0214 0.4846 0.4990 0.0184 0.4829

(0.0186) (0.0618) (0.0547) (0.0099) (0.0566) (0.0527)

Li,sy ((3, 6), (3, 55)) 0.4830 0.0074 0.4984 0.4775 0.0004 0.4995

(0.0538) (0.0524) (0.0141) (0.0516) (0.0272) (0.0058)

((10,16), (2, 45)) 0.5006 −0.0055 0.4984 0.4762 −0.0391 0.4986

(0.0491) (0.0752) (0.0151) (0.0563) (0.0743) (0.0063)

((7, 20), (14, 41)) 0.4804 0.0270 0.5005 0.4852 0.0163 0.4984

(0.0577) (0.0697) (0.0174) (0.0494) (0.0525) (0.0089)
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