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ABSTRACT. Skew-symmetric families of distributions such as the skew-normal and skew-t rep-
resent supersets of the normal and t distributions, and they exhibit richer classes of extremal
behaviour. By defining a non-stationary skew-normal process, which allows the easy handling
of positive definite, non-stationary covariance functions, we derive a new family of max-stable
processes – the extremal skew-t process. This process is a superset of non-stationary pro-
cesses that include the stationary extremal-t processes. We provide the spectral representation
and the resulting angular densities of the extremal skew-t process and illustrate its practical
implementation.

Key words: angular density, asymptotic independence, extremal coefficient, extreme val-
ues, max-stable distribution, non-central extended skew-t distribution, non-stationarity,
skew-normal distribution, skew-normal process, skew-t distribution

1. Introduction

The modern day analysis of extremes is based on results from the theory of stochastic processes.
In particular, max-stable processes (de Haan, 1984) are a popular and useful tool when mod-
elling extremal responses in environmental, financial and engineering applications. Let S � R

k

denote a k-dimensional region of space (or space-time) over which a real-valued stochastic
process ¹Y.s/ºs2S with a continuous sample path on S can be defined. Considering a sequence
Y1; : : : ; Yn of independent and identically distributed (iid) copies of Y , the pointwise partial
maximum can be defined as

Mn.s/ D max
iD1;:::;n

Yi .s/; s 2 S:

If there are sequences of real-valued functions, an.s/ > 0 and bn.s/, for s 2 S and n D
1; 2; : : :, such that²

Mn.s/ � bn.s/

an.s/

³
s2S

) ¹U.s/ºs2S;

converges weakly as n ! 1 to a process U.s/ with non-degenerate marginal distributions for
all s 2 S, then U.s/ is known as a max-stable process (de Haan & Ferreira, 2006, Ch. 9). In
this setting, for a finite sequence of points .sj /j2I in S, where I D ¹1; : : : ; dº is an index set,
the finite-dimensional distribution of U is then a multivariate extreme value distribution (de
Haan & Ferreira, 2006, Ch. 6). This distribution has generalized extreme value univariate mar-
gins and, when parameterized with unit Fréchet margins, has a joint distribution function of
the form

G.xj ; j 2 I / D exp¹�V.xj ; j 2 I /º; xj > 0;
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where xj � x.sj /. The exponent function V describes the dependence between extremes and
can be expressed as

V.xj ; j 2 I / D

Z
W

max
j2I

.wj =xj /H.dw1; : : : ; dwd /;

where the angular measure H is a finite measure defined on the d -dimensional unit simplex
WD¹w 2 R

d W w1C� � �Cwd D 1º; satisfying the moment conditions
R
W
wj H.dw/ D 1; j 2 I ,

(de Haan & Ferreira, 2006, Ch. 6).
In recent years, a variety of specific max-stable processes have been developed, many of

which have become popular as they can be practically amenable to statistical modelling (Davi-
son et al., 2012). The extremal-t process (Opitz, 2013) is one of the best-known and widely
used max-stable processes, from which the Brown–Resnick process (Brown & Resnick, 1977;
Kabluchko et al., 2009), the Gaussian extreme-value process (Smith, 1990) and the extremal-
Gaussian processes (Schlather, 2002) can be seen as special cases. In their most basic form,
the Brown–Resnick and the extremal-t processes can be respectively understood as the limiting
extremal processes of strictly stationary Gaussian and Student-t processes. However, in prac-
tice, data may be non-stationary and exhibit asymmetric distributions in many applications. In
these scenarios, skew-symmetric distributions (Azzalini & Captianio A., 2014; Arellano-Valle
& Azzalini, 2006; Azzalini, 2005; Genton, 2004; Azzalini, 1985) provide simple models for
modelling asymmetrically distributed data. However, the limiting extremal behaviour of these
processes has not yet been established.

In this paper, we characterize and develop statistical models for the extremal behaviour of
skew-normal and skew-t distributions. The joint tail behaviours of these skew distributions
are capable of describing a far wider range of dependence levels than that obtained under
the symmetric normal and t distributions. We provide a definition of a skew-normal process,
which is in turn a non-stationary process. This provides an accessible approach to construct-
ing positive definite, non-stationary covariance functions when working with non-Gaussian
processes. Recently, some forms of non-stationary dependent structures embedded into max-
stable processes have been studied by Huser & Genton (2015). We show that on the basis of
the skew-normal process, a new family of max-stable processes – the extremal skew-t process
– can be obtained. This process is a superset of non-stationary processes that include the sta-
tionary extremal-t processes (Opitz, 2013). From the extremal skew-t process, a rich family of
non-stationary, isotropic or anisotropic extremal coefficient functions can be obtained.

This paper is organized as follows: in Section 2, we first introduce a new variant of the
extended skew-t class of distributions, before developing a non-stationary version of the skew-
normal process. In both cases, we discuss the stochastic behaviour of their extreme values.
In Section 3, we derive the spectral representation of the extended extremal skew-t process.
Section 4 discusses inferential aspects of the extremal skew-t dependence model, and Section 5
provides a real data application. We conclude with a Discussion.

2. Preliminary results on skew-normal processes and skew-t distributions

We introduce two preliminary results that will be used in order to present our main contribu-
tion in Section 3: the extremal skew-t process. In Section 2.1, we define the non-central extended
skew-t family of distributions, which is a new variant of the class introduced by Arellano–
Valle & Genton (2010) that allows a non-centrality parameter. In Section 2.2, we present the
development of a new non-stationary, skew-normal random process.

Hereafter, we use Y � Dd .�1; �2; : : :/ to denote that Y is a d -dimensional random vector
with probability law D and parameters �1; �2; : : :. When d D 1, the subscript is omitted for
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brevity. Similarly, when a parameter is equal to zero or a scale matrix is equal to the iden-
tity (both in a vector and scalar sense) so that Dd reduces to an obvious sub-family, it is
also omitted.

2.1. The non-central, extended skew-t distribution

While several skew-symmetric distributions have been developed (e.g. Genton, 2004; Azzalini,
2014), we focus on the skew-normal and skew-t distributions.

Denote a d -dimensional skew-normally distributed random vector by Y � SNd .�;�; ˛; �/
(Arellano-Valle & Genton, 2010). This random vector has probability density function (pdf)

�d .yI�;�; ˛; �/ D
�d .yI�;�/

ˆ¹�=
p
1CQ N�.˛/º

ˆ.˛>´C �/; y 2 R
d ; (1)

where �d .yI�;�/ is a d -dimensional normal pdf with mean � 2 R
d and d � d covariance

matrix �, ´ D .y � �/=!, ! D diag.�/1=2, N� D !�1�!�1, Q N�.˛/ D ˛> N�˛ and ˆ.�/ is
the standard univariate normal cumulative distribution function (cdf). The shape parameters
˛ 2 R

d and � 2 R are, respectively, slant and extension parameters. The cdf associated with (1)
is termed the extended skew-normal distribution (Arellano-Valle & Genton, 2010) of which
the skew-normal and normal distributions are special cases (Arellano-Valle & Genton, 2010;
Azzalini & Captianio A., 2014). For example, in the case where ˛ D 0 and � D 0, the standard
normal pdf is recovered.

Definition 1. Y is a d -dimensional, non-central extended skew-t distributed random vector,
denoted by Y � STd .�;�; ˛; �; �; �/, if for y 2 R

d it has pdf

 d .yI�;�;˛; �; �; �/ D
 d .yI�;�; �/

‰

�
�p

1CQ N�.˛/
I �p

1CQ N�.˛/
; �

�‰
´
.˛>´C �/

s
� C d

� CQ N��1 .´/
I �; �C d

μ
;

(2)

where  d .yI�;�; �/ is the pdf of a d -dimensional t -distribution with location � 2 R
d , d � d

scale matrix � and � 2 R
C degrees of freedom, ‰.�I a; �/ denotes a univariate non-central t

cdf with non-centrality parameter a 2 R and � degrees of freedom and Q N��1.´/ D ´> N��1´.
The remaining terms are as defined in (1). The associated cdf is

‰d .yI�;�; ˛; �; �; �/ D
‰dC1 ¹ Ń I�

�; ��; �º

‰ . N� I N�; �/
; (3)

where Ń D .´>; N�/>,‰dC1 is a .dC1/-dimensional (non-central) t cdf with covariance matrix
and non-centrality parameters

�� D

 
N� �ı

�ı> 1

!
; �� D

 
0

N�

!
;

and � degrees of freedom, and where

ı D
®
1CQ N�.˛/

¯�1=2 N�˛; N� D
®
1CQ N�.˛/

¯�1=2
�; N� D

®
1CQ N�.˛/

¯�1=2
�: (4)

When the non-centrality parameter � is zero, then the extended skew-t family of Arellano–
Valle & Genton (2010) is obtained. For the non-central skew-t family, we now demonstrate
modified properties to those discussed in Arellano-Valle & Genton (2010).
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24 B. Beranger et al. Scand J Statist 44

Proposition 1 (Properties). Let Y � STd .�;�; ˛; �; �; �/.

(1) Marginal and conditional distributions. Let I � ¹1; : : : ; dº and NI D ¹1; : : : ; dºnI
identify the dI -dimensional and d NI -dimensional subvector partition of Y such that Y D�
Y>
I
; Y>
NI

�>
, with corresponding partitions of the parameters .�;�; ˛/. Then

(a) YI � STdI
�
�I ; �II ; ˛

�
I
; ��
I
; ��
I
; �
�
, where

˛�I D
˛I C N�

�1
II
N�I NI˛ NIq

1CQ Q� NI NI �I
.˛ NI /

; ��I D
�q

1CQ Q� NI NI �I
.˛ NI /

; ��I D
�q

1CQ Q� NI NI �I
.˛ NI /

;

(5)

given Q� NI NI �I D N� NI NI � N� NII N�
�1
II
N�I NI .

(b) .Y NI j YI D yI / � STd NI .� NI �I ; � NI �I ; ˛ NI �I ; � NI �I ; � NI �I ; � NI �I /, where � NI �I D � NI C

� NII�
�1
II
.yI � �I /, � NI �I D 	I� NI NI �I , 	I D ¹� C Q

��1II
.´I /º=.� C dI /, ´I D

!�1
I
.yI � �I /, !I D diag.!II /

1=2, Q
��1II

.´I / D ´>
I
��1
II
´I , � NI NI �I D � NI NI �

� NII�
�1
II
�I NI , ˛ NI �I D ! NI �I!

�1
NI
˛ NI , ! NI �I D diag.� NI NI �I /

1=2, ! NI D diag.! NI NI /
1=2,

� NI �I D 	
�1=2
I

°�
˛>
NI
N� NII
N��1
II
C ˛>

I

�
´I C �

±
, � NI �I D 	

�1=2
I

� and � NI �I D � C dI .

(2) Conditioning-type stochastic representation. We can write Y D �C�Z, whereZ D .X j
˛>X C � > X0/ and where X � Td . N�; �/ is independent of X0 � T .�; �/.

(3) Additive-type stochastic representation. We can write Y D � C �Z, where Z Dr
�C QX20
�C1

X1C ı QX0; X1 � Td .�� ıı>; N�; �C1/ is independent of QX0 D .X0 j X0C N� >

0/, X0 � T . N�; �/, ı 2 .�1; 1/d and where N� and N� are as in (4).

Proof in Appendix A.1

We conclude by presenting a final property of the non-central skew-t family. The next result
describes the extremal behaviour of observations drawn from a member of this class.

Proposition 2. Let Z1; : : : ; Zn be iid copies of Z � STd . N�;˛; �; �; �/ and Mn be the
componentwise sample maxima. Define an D .an;1; : : : ; an;d />, where

an;j D

8̂̂<
ˆ̂:
n¹.�=2/º�1¹.� C 1/=2º�.��2/=2‰

�
˛�
j

p
� C 1I �; � C 1

�
p

‰

�
��
j
=
°
1CQ N�

�
˛�
j

�±1=2
I ��
j
=
°
1CQ N�

�
˛�
j

�±
; �

�
9>>=
>>;
1=�

where ˛�
j
D ˛�
¹jº

, ��
j
D ��
¹jº

and ��
j
D ��
¹jº

are the marginal parameters (5) under Propo-
sition 1(1). Then Mn=an ) U as n ! C1, where U has univariate �-Fréchet marginal
distributions (i.e. e�x

��
, x > 0) and exponent function

V.xj ; j 2 I / D

dX
jD1

x��j ‰d�1

0
@ s � C 1

1 � !2
i;j

 
xC
i

xC
j

� !i;j

!
; i 2 Ij

!>
I N�C
j
; ˛C
j
; �C
j
; � C 1

1
A ;
(6)

where‰d�1 is a .d�1/-dimensional central extended skew-t distribution with correlation matrix,
N�C
j

, shape and extension parameters ,˛C
j

and �C
j

, and �C 1 degrees of freedom, I D ¹1; : : : ; dº,
Ij D In¹j º and !i;j is the .i; j /-th element of N�.
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Proof (and further details) in Appendix A.2.

As the limiting distribution (6) is the same as that of the classic skew-t distribution
(Padoan, 2011), it exhibits identical upper and lower tail dependence coefficients (e.g. Joe, 1997,
Ch. 5). That is, the extension and non-centrality parameters, � and �, do not affect the
extremal behaviour.

2.2. A non-stationary, skew-normal random process

While there are several definitions of a stationary skew-normal process (e.g. Minozzo &
Ferracuti, 2012), stationarity is incompatible with the requirement that all finite-dimensional
distributions of the process are skew-normal. We now construct a non-stationary version of
the skew-normal process through the additive-type stochastic representation (e.g. Azzalini,
2014, Ch. 5). A similar approach was explored by Zhang & El-Shaarawi (2010) for the
stationary case.

Definition 2. Let {X.s/ºs2S be a stationary Gaussian random process on S with zero-mean,
unit variance and correlation function �.h/ D E¹X.s/X.s C h/º for s 2 S and h 2 R

k . For
X 0 � N .0; 1/ independent of X.s/, " 2 R and a function ı W S 7! .�1; 1/, define

X 00.s/ WD X 0 j X 0 C " > 0; 8 s 2 S

Z.s/ WD

q
1 � ı.s/2X.s/C ı.s/X 00.s/; s 2 S:

(7)

Then Z.s/ is a skew-normal random process.

We refer to ı.s/ as the slant function. From (7), if ı.s/ � 0 for all s 2 S, thenZ is a Gaussian
random process. Note thatZ is a random process with a consistent family of distribution func-
tions, becauseZ.s/ D a.s/X.s/Cb.s/Y.s/, where a and b are bounded functions and X and Y
are random processes with a consistent family of distribution functions. For any finite sequence
of points s1; : : : ; sd 2 S, the joint distribution of Z.s1/; : : : ; Z.sd / is SNd . N�;˛; �/, where

N� D Dı. N†C .D
�1
ı ı/.D�1ı ı/>/Dı

˛ D ¹1C .D�1ı ı/> N†�1.D�1ı ı/º�1=2D�1ı
N†�1.D�1ı ı/

� D ¹1CQ N�.˛/º
1=2 "

(8)

and where N† is the d � d correlation matrix of X , ı D .ı.s1/; : : : ; ı.sd //
> and Dı D ¹1d �

diag.ı2/º1=2, where 1d is the identity matrix (Azzalini & Captianio A., 2014, Ch. 5). As a
result, for any lag h 2 R

k , the distributions of ¹Z.s1/; : : : ; Z.sd /º and ¹Z.s1 C h/; : : : ; Z.sd C
h/º will differ unless ı.s/ D 0 for all s 2 S. Hence, the distribution of Z is not translation
invariant, and the process is not strictly stationary. For s 2 S and h 2 R

k , the mean m.s/ and
covariance function cs.h/ of the skew-normal random process are

m.s/ D E¹Z.s/º D ı.s/�."/=ˆ."/

and

cs.h/ D Cov¹Z.s/;Z.sCh/º D �.h/
q
¹1 � ı2.s/º¹1 � ı2.s C h/ºCı.s/ı.sCh/.1�r/; (9)

where r D
°
�."/
ˆ."/

�
"C �."/

ˆ."/

�±
: Hence, the mean is not constant, and the covariance does not

depend only on the lag h, unless ı.s/ D ı0 2 .�1; 1/ for all s 2 S. In the latter case, the
skew-normal random process is weakly stationary (Zhang & El-Shaarawi, 2010).

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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26 B. Beranger et al. Scand J Statist 44

One benefit of working with a skew-normal random field is that the non-stationary covari-
ance function (9) is positive definite if the covariance function of X is positive definite and if
�1 < ı.s/ < 1 for all s 2 S. Hence, a valid model is directly obtainable by means of standard
parametric correlation models �.h/ and any bounded function ı in .�1; 1/. If the Gaussian pro-
cess correlation function satisfies �.0/ D 1 and �.h/ ! 0 as khk ! C1, then the correlation
of the skew-normal process satisfies �s.0/ D 1 and

�s.h/ D
cs.h/p
cs.0/cs.h/

	
ı.s/ı.s C h/.1 � r/p

.1 � ı2.s/r/.1 � ı2.s C h/r/
;

as khk ! C1. Hence, �s.h/ D 0 if either ı.s/ or ı.sCh/ is zero. Conversely, if both ı.s/!˙1
and ı.s C h/!˙1, then �s.h/!˙1.

The increments Z.sC h/�Z.s/ are skew-normal distributed for any fixed s 2 S and h 2 R
k

(Azzalini & Captianio A., 2014, Ch. 5), and the variogram 2�s.h/ D Var¹Z.s C h/ � Z.s/º is
equal to

2�s.h/ D 2

 
1 � cs.h/ �

ı2.s C h/C ı2.s/

2=r

!
:

When h D 0, the variogram is zero, and when khk ! C1, the variogram approaches a
constant 
 2, respectively resulting in spatial independence or dependence for large distances
h. We can now infer the conditions required so that Z.s/ has a continuous sample path.

Proposition 3. Assume that S � R. A skew-normal process ¹Z.s/; s 2 Sº has a continuous sample
path if ı.s C h/ � ı.s/ D o.1/ and 1 � �.h/ D O.j log jhjj�a/ for some a > 3, as h! 0.

This result follows by noting that rs.h/ D �.h/Cı2.s/.1��.h//Co.1/ as h! 0, and this is a
consequence of the continuity assumption on ı.s/, where rs.h/ D cs.h/Cr¹ı2.sCh/Cı2.s/º=2.
Therefore, 1 � rs.h/ D O.j log jhjj�a/ as h ! 0. Thus, the proof follows from the results in
Lindgren (2012, page 48). This means that continuity of the skew-normal process is assured if
ı.s/ is a continuous function, in addition to the usual condition on the correlation function of
the generating Gaussian process (e.g. Lindgren, 2012, Ch. 2).

Figure 1 illustrates trajectories of the skew-normal process for k D 1, withX.s/ a zero-mean,
unit variance Gaussian process on Œ0; 1
 with isotropic power-exponential correlation function

�.hI#/ D exp¹� .h=�/�º; # D .�; �/; � > 0; 0 < � 
 2; h > 0; (10)

with � D 1:5, � D 0:3 and h 2 Œ0; 1
.
The first row shows the standard stationary case. The second row illustrates the non-

stationary correlation function obtained with s D 0:1 (solid line) behaving close to the
stationary correlation, however, decaying more slowly as s increases and approaching, but not
reaching zero exactly. The third row demonstrates that both points may be negatively corre-
lated and that �s.h/ is not necessarily a decreasing function in h. The bottom row highlights
this even more clearly – correlation functions need not be monotonically decreasing – implying
that pairs of points far apart can be more dependent than nearby points.

Simulating a skew-normal random process is computationally cheap through Defini-
tion 2, with the simulation of the required stationary Gaussian process achievable through
many fast algorithms (e.g. Wood & Chan, 1994; Chan & Wood, 1997). Rather than
relying on (8), for practical purposes, to directly simulate from a skew-normal process
with given parameters ˛, N� and � , a conditioning sampling approach can be adopted
(Azzalini & Captianio A., 2014, Ch. 5).

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. Simulations from four univariate skew-normal random processes on Œ0; 1� with " D 0. The left
column shows the sample path (solid line) of the simulated process Z.s/ and of the generating Gaussian
process X.s/ (grey line). The middle column illustrates the slant function ı.s/ (solid line) and the mean
m.s/ of the process (dashed line). The right column displays the non-stationary correlation functions at
locations s D 0:1 (solid line), 0.5 and 0.75 (dot-dash). Rows 1–3 use slant function ı.s/ D a sin.bs/ with
a D 0:95 and b D 0; 1 and 3 respectively, whereas row 4 uses ı.s/ D a2 sin.bs/ cos.bs/ with a D 1:3
and b D 0:9.

Specifically, let X.s/ define a zero-mean, unit variance stationary Gaussian random field on
S with correlation function !.h/ D E¹X.s/X.sCh/º, and let N� be the d �d correlation matrix
of X.s1/; : : : ; X.sd /. Specify ˛ W S 7! R to be a continuous square-integrable function, and let
h˛;Xi D

R
S
˛.s/X.s/ ds be the inner product. Let X 0 be a standard normal random variable

independent of X and � 2 R. If we define

Z.s/ D
®
X.s/jh˛;Xi > X 0 � �

¯
; s 2 S (11)

then, for any finite set s1; : : : ; sd 2 S, the distribution of Z.s1/; : : : ; Z.sd / is SN . N�;˛; �/,
where ˛ � ¹˛.s1/; : : : ; ˛.sd /º. For simplicity, we also refer to ˛.s/ as the slant function. More
efficient simulation of skew-normal processes can be achieved by considering the form Z.s/ D

X.s/ if h˛;Xi > X 0 � � and Z.s/ D �X.s/ otherwise (e.g. Azzalini, 2014, Ch.5).
We conclude this section by discussing some extremal properties of the skew-normal process

Z.s/. For a finite sequence of points s1; : : : ; sd 2 S, with d � 2. Each margin Z.si / follows a

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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28 B. Beranger et al. Scand J Statist 44

skew-normal distribution (Azzalini & Captianio A., 2014) and so is in the domain of attrac-
tion of a Gumbel distribution (Chang & Genton, 2007; Padoan, 2011). Further, each pair
.Z.si /; Z.sj // is asymptotically independent (Bortot, 2010; Lysenko et al., 2009). However,
in this case, a broad class of tail behaviours can still be obtained by assuming that the joint
survival function is regularly varying atC1 with index �1=� (Ledford & Tawn, 1996), so that

Pr.Z.si / > x;Z.sj / > x/ D x
�1=�L .x/; x !C1; (12)

where � 2 .0; 1
 is the coefficient of tail dependence and L .x/ is a slowly varying function,
that is, L .ax/=L .x/ ! 1 as x ! C1, for fixed a > 0. Considering L as a constant, at
extreme levels, margins are negatively associated when � < 1=2, independent when � D 1=2 and
positively associated when 1=2 < � < 1. When � D 1 and L .x/ � 0, asymptotic dependence
is obtained. We derive the asymptotic behaviour of the joint survival function (12) for a pair
of skew-normal margins. As our primary interest is in spatial applications, we focus on the
joint upper tail of the skew-normal distribution when the variables are positively correlated or
uncorrelated.

Proposition 4. Let Z � SN2. N�;˛/, where ˛ D .˛1; ˛2/
> and N� is a correlation matrix with

off-diagonal term ! 2 Œ0; 1/. The joint survivor function of the bivariate skew-normal distribution
with unit Fréchet margins behaves asymptotically as (12), where

(1) when either ˛1; ˛2 � 0 or ! > 0 and ˛j 
 0 and ˛3�j � �!�1˛j for j D 1; 2, then

� D .1C !/=2; L .x/ D
2 .1C !/

1 � !
.4
 log x/�!=.1C!/I

(2) when ! > 0, ˛j < 0 and �! ˛j 
 ˛3�j < �!�1˛j , for j D 1; 2, then

(a) If ˛3�j > �˛j = N̨j , then

� D
.1 � !2/ N̨2

j

1 � !2 C . N̨j � !/2
; L .x/ D

2 N̨2
j
.1 � !2/

. N̨2
j
� !/.1 � ! N̨j /

.4
 log x/1=2��1I

(b) If ˛3�j < �˛j = N̨j , then

� D

"
1 � !2 C . N̨j � !/

2

.1 � !2/ N̨2
j

C

�
˛3�j C

˛j

N̨j

�2#�1
;

L .x/ D
�23=2
1=2 N̨2

j
.1 � !2/.˛3�j C ˛j = N̨j /

�1

. N̨j � !/¹1 � ! N̨j C ˛j .˛j C ˛3�j N̨j /.1 � !2/º
.4
 log x/1=2��3=2I

1. when either ˛1; ˛2 < 0 or ! > 0, ˛j < 0 and 0 < ˛3�j < �! ˛j for j D 1; 2, then

� D

´
1

1 � !2

 
˛2
3�j

.1 � !2/C 1

N̨2
3�j

C
˛2
j
.1 � !2/C 1

N̨2
j

C
2.˛3�j˛j .1 � !

2/ � !/

N̨3�j N̨j

!μ�1
;

L .x/ D
�23=2
1=2 N̨3=2

j
N̨2
3�j

.1 � !2/.˛i N̨j C ˛j N̨3�j /
�1

. N̨j � ! N̨3�j /¹1 � ! N̨j C ˛j .˛j C ˛3�j N̨j = N̨3�j /.1 � !2/º
.4
 log x/1=2��3=2I

where N̨j D
q
1C ˛�2

j
and ˛�

j
WD ˛�

¹jº
D

˛jC!˛3�jp
1C˛3�j .1�!

2/
.
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Scand J Statist 44 Extremal dependence models 29

Proof in Appendix A.3.

As a result, when both marginal parameters are non-negative (case 1), then 1=2 
 � < 1,
with � D 1=2 occurring when ! D 0. As a consequence, as for the Gaussian distribution
(for which ˛ D 0), the marginal extremes are either positively associated or exactly indepen-
dent. The marginal extremes are also completely dependent when ! D 1, regardless of the
values of the slant parameters, ˛. When one marginal parameter is positive and one is neg-
ative (case 2), then � > .1 C !/=2. In this case, the extreme marginals are also positively
associated, but the dependence is greater than when the random variables are normally dis-
tributed. Finally, when both marginal parameters are negative (case 3), then 0 < � < 1=2,
implying that the extreme marginals are negatively associated, although ! > 0. It should be
noted that differently from the Gaussian case (˛ D 0) where ! > 0 implies a positive asso-
ciation, in this case, it is not necessarily true. In summary, the degree of dependence in the
upper tail of the skew-normal distribution ranges from negative to positive association and
includes independence.

3. Spectral representation for the extremal skew-t process

The spectral representation of stationary max-stable processes with common unit Fréchet mar-
gins can be constructed using the fundamental procedures introduced by de Haan (1984) and
Schlather (2002) (see also de Haan & Ferreria, 2006, Ch. 9). This representation can be for-
mulated in broader terms resulting in max-stable processes with �-Fréchet univariate marginal
distributions, with � > 0 (Opitz, 2013). In order to state our result, we rephrase the spectral
representation to also take into account non-stationary processes.

Let ¹Y.s/ºs2S be a non-stationary real-valued stochastic process with continuous sample
path on S such that E ¹sups2S Y.s/º < 1 and mC.s/ D EŒ¹YC.s/º� 
 < 1;8s 2 S for � > 0,
where YC.�/ D max¹Y.�/; 0º denotes the positive part of Y . Let ¹Ri ºi�1 be the points of an
inhomogeneous Poisson point process on .0;1/ with intensity �r�.�C1/, � > 0, which are
independent of Y . Define

U.s/ D max
iD1;2;:::

¹RiY
C

i
.s/º=¹mC.s/º1=� ; s 2 S; (13)

where Y1; Y2; : : : are iid copies of Y . Then U is a max-stable process with common �-Fréchet
univariate margins. In particular, for fixed s 2 S and x.s/ > 0, we have

Pr.U.s/ 
 x.s// D exp

"
�

E¹YC.s/º�

x�.s/mC.s/

#
D exp¹�1=x�.s/º;

and for fixed s1; : : : ; sd , the finite-dimensional distribution of U has exponent function

V.x.s1/; : : : ; x.sd // D E

 
max
j

"
¹YC.sj /=x.sj /º

�

mC.sj /

#!
; x.sj / > 0; j D 1; : : : ; d (14)

(de Haan & Ferreria, 2006, Ch. 9).
In this construction, the impact of a non-stationary process Y.s/ would be that the depen-

dence structure of the max-stable process U.s C h/ depends on both the separation h and the
location s 2 S and would therefore itself be non-stationary. The succeeding theorem derives a
max-stable process U.s/ when Y.s/ is the skew-normal random field introduced in Section 2.2.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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30 B. Beranger et al. Scand J Statist 44

Theorem 1 (Extremal skew-t process). Let Y.s/ be a skew-normal random field on s 2 S with
finite-dimensional distribution SNd . N�;˛; �/, as defined in (11). Then the max-stable process
U.s/, given by (13), has �-Fréchet univariate marginal distributions and exponent function

V.xj ; j 2 I / D

dX
jD1

x��j ‰d�1

0
@ s � C 1

1 � !2
i;j

 
xı
i

xı
j

� !i;j

!
; i 2 Ij

!>
I N�ıj ; ˛

ı
j ; �
ı
j ; �
ı
j ; �C1

1
A ;

(15)

where xj � x.sj /, ‰d�1 is a .d � 1/-dimensional non-central extended skew-t distribution
(Definition 1) with correlation matrix N�ı

j
, shape, extension and non-centrality parameters ˛ı

j
; �ı
j

and �ı
j

, � C 1 degrees of freedom, I D ¹1; : : : ; dº, Ij D In¹j º and !i;j is the .i; j /-th element
of N�.

Proof (and further details) in Appendix A.4.

We call the process U.s/ with exponent function (15) an extremal skew-t process.
Note that in Theorem 1, when � D 0, and the slant function is such that ˛.s/ � 0 for all

s 2 S, then the exponent function (15) becomes

V.xj ; j 2 I / D
X
j2I

x��j ‰d�1

2
4 s � C 1

1 � !2
i;j

�
xi

xj
� !i;j

�
; i 2 Ij

!>
I N�ıj ; � C 1

3
5 :

(16)

This is the exponent function of the extremal-t process as discussed in Opitz (2013).
If we assume � D 0 in (11), then the bivariate exponent function of the extremal skew-t

process seen as a function of the separation h is equal to

V ¹x.s/; x.sCh/º D
‰.b.x�s .h//I˛

�
s .h/; �

�
s .h/; � C 1/

x�.s/
C
‰.b.xCs .h//I˛

C
s .h/; �

C
s .h/; � C 1/

x�.s C h/

where ‰ is a univariate extended skew-t distribution, b.�/ D
q

�C1

1�!2.h/
.� � !.h//;

x�s .h/ D
x.s C h/�s.h/

x.s/
; xCs .h/ D

x.s/

x.s C h/�s.h/
;

˛�s .h/ D ˛.s C h/

q
1 � !2.h/; ˛Cs .h/ D ˛.s/

q
1 � !2.h/;

��s .h/ D
p
� C 1¹˛.s/C ˛.s C h/!.h/º; �Cs .h/ D

p
� C 1¹˛.s C h/C ˛.s/!.h/º;

and

�s.h/ D

0
B@‰

h
˛.s/C ˛.s C h/!.h/

q
�C1

˛2.sCh/¹1�!2.h/º
I � C 1

i
‰
h
˛.s C h/C ˛.s/!.h/

q
�C1

˛2.s/¹1�!2.h/º
I � C 1

i
1
CA
1=�

:

Clearly, as the dependence structure depends on both correlation function !.h/ and the slant
function ˛.s/, and therefore on the value of s 2 S, it is a non-stationary dependence structure.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 44 Extremal dependence models 31

Fig. 2. Examples of univariate (k D 1) non-stationary isotropic extremal coefficient functions
�s.h/, for the extremal skew-t process over s 2 Œ0; 1
, using correlation function (10), where
h 2 Œ0; 1
, � D 1:5 and � D 0:3. Slant functions are as follows (left to right panels): ˛.s/ D
�1 � s C exp¹sin.5s/º; ˛.s/ D 1C 1:5s � exp¹sin.8s/º and ˛.s/ D 2:25 sin.9s/ cos.9s/. Solid,
dashed and dot-dashed lines represent the fixed locations s D 0:05; 0:25 and 0.8, respectively.

From the bivariate exponent function, we can derive the non-stationary extremal coefficient
function, using the relation �s.h/ D V.1; 1/, which gives

�s.h/ D ‰.b .�s.h// ˛
�
s .h/; �

�
s .h/; � C 1/C‰

�
b.1=�s.h//I˛

C
s .h/; �

C
s .h/; � C 1

�
: (17)

Figure 2 shows some examples of univariate (k D 1) non-stationary isotropic extremal coeffi-
cient functions obtained from (17) using the power-exponential correlation function (10). Each
panel illustrates a different slant function ˛.s/, with the line-types indicating the fixed location
value of s 2 S: The extremal coefficient functions �s.h/ increase as the value of h increases,
meaning that the dependence of extremes decreases with the distance. �s.h/ grows with differ-
ent rates depending on the location s 2 S. Although the ergodicity and mixing properties of the
process must be investigated, numerical results show that for some s, �s.h/! 2 as jhj ! C1.
By increasing the complexity of the slant function (e.g. centre and right panels), it is possible to
construct extremal coefficient functions, which exhibit stronger dependence for larger distances,
h, compared with shorter distances. Similarly, Fig. 3 illustrates examples of bivariate (k D 2)
non-stationary geometric anisotropic extremal coefficient functions, �s.h/, also obtained from
(17). Similar interpretations to the univariate case can be made (Fig. 2), in addition to noting
that the level of dependence is affected by the direction (from the origin).

4. Inference for extremal skew-t processes

Parametric inference for the extremal skew-t process can be performed in two ways. The first
uses the marginal composite likelihood approach (e.g. Padoan et al., 2010; Davison & Gho-
lamrezaee, 2012; Huser & Davison, 2013), because only marginal densities of dimension up to
d D 4 are practically available (Supporting Information).

Let # 2 � � R
p , p D 1; 2; : : :, denote the vector of dependence parameters of the extremal

skew-t process. Consider a sample .xi ; i D 1; : : : ; n) with xi 2 R
d
C

of n iid replicates of the
process observed over a finite number of points .sj ; j 2 I / with sj 2 S. For simplicity, it is
assumed that the univariate marginal distributions are unit Fréchet. The pairwise or triplewise
(m D 2; 3) log-composite likelihood is defined by

`m.# I x/ D

nX
iD1

X
E2Em

logf .xi 2 EI#/; m D 2; 3;

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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32 B. Beranger et al. Scand J Statist 44

Fig. 3. Bivariate (k D 2) geometric anisotropic non-stationary extremal coefficient functions
�s.h/, for the extremal skew-t process on s 2 Œ0; 1
2, based on extremal coefficient function
(17) with � D 1:5 and � D 0:3; where h D v>Rv, v D .v1; v2/

> 2 Œ�1; 1
2 and R is a
2 � 2 matrix whose diagonal elements are 2.5 and off-diagonal elements 1.5. Slant functions
are ˛.s/ D exp¹sin.4s1/ sin.4s2/ � s1s2 � 1º (top panels) and ˛.s/ D 2:25¹sin.3s1/ cos.3s1/C
sin.3s2/ cos.3s2/º (bottom), with s D .s1; s2/> 2 Œ0; 1
2. Left to right: panels are based on fix-
ing s D .0:2; 0:2/>, s D .0:4; 0:4/> and s D .0:85; 0:85/> (top panels) and s D .0:25; 0:25/>,
s D .0:25; 0:8/> and s D .0:8; 0:8/> (bottom).

where x D .x1; : : : ; xn/
> with xi 2 R

m
C

and f is a marginal extremal skew-t pdf associated

with each member of a set of marginal events Em. See, for example, Varin et al. (2011) for a
complete description of composite likelihood methods.

A second approach is to use the approximate likelihood function introduced by Coles &
Tawn (1994), which is constructed on the space of angular densities. The angular measure of
the extremal skew-t dependence model (15) places mass on the interior as well as on all the
other subspaces of the simplex, such as the edges and the vertices. We derive some of these
densities following the results in Coles & Tawn (1991).

Let J be an index set that takes values in I D P.¹1; : : : ; dº/n;, where P.I / is the power set
of I . For any fixed d and all J 2 I, the sets

Wd;J D .w 2W W wj D 0; if j … J I wj > 0 if j 2 J /

provide a partition of the d -dimensional simplex W into 2d � 1 subsets. Let k D jJ j be the
size of J . Let hd;J denote the density that lies on the subspace Wd;J , which has k � 1 free
parameters wj such that j 2 J . When J D ¹1; : : : ; dº, the angular density in the interior of
the simplex is

h.w/ D

 d�1

0
@"r �C1

1�!2
i;1

²�
wı
i

wı1

�1=�
� !i;1

³
; i 2 I1

#>
I�ı
1
; ˛ı
1
; �ı
1
; �ı
1
; � C 1

1
A

w
.dC1/
1

´Qd
iD2

1
�

r
�C1

1�!2
i;1

�
wı
i

wı1

� 1
��1 m

C
i

m
C
1

μ�1 ; w 2W

(18)
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Scand J Statist 44 Extremal dependence models 33

where  d�1 denotes the d � 1-dimensional skew-t density, Ij D ¹1; : : : ; dºnj and where
the parameters �ı

1
; ˛ı
1
; �ı
1
; �ı
1

and wı
i
D wi .m

C

i
/1=� are given in the proof to Theorem 1

(Appendix A.4). When J D ¹i1; : : : ; ikº � ¹1; : : : ; dº, the angular density for any x 2 R
d
C

is

hd;J

�
xi1P
i2J

xi
; � � � ;

xik�1P
i2J xi

�
D �

 X
i2J

xi

!kC1
lim

xj!0;

j…J

@kV

@xi1 � � � @xik
.x/: (19)

Thus, when J D ¹j º for any j 2 ¹1; : : : ; dº, then Wd;J is a vertex ej of the simplex, and the
density is a point mass, denoted hd;J D H.¹ej º/. In this case, (19) reduces to

hd;J D ‰d�1

8<
:
 
�

s
� C 1

1 � !2
i;j

!i;j ; i 2 Ij

!>
I�ıj ; ˛

ı
j ; �
ı
j ; �
ı
j ; � C 1

9=
; ; (20)

where ‰d�1 denotes the d � 1-dimensional skew-t distribution with parameters again given in
the proof to Theorem 1 (Appendix A.4).

Computations of all 2d � 1 densities that lie on the edges and vertices of the simplex are
available for d D 3. In this case, the angular densities on the interior and vertices of the simplex
can be deduced from (18) and (20). For all i; j 2 J D ¹1; 2; 3º, with i ¤ j , the angular density
on the edges of Wd;J for w 2Wd;J is given by

h3;¹i;jº.w/ D
X

u;v2¹i;jº;u¤v

�
 .bıu;vI � C 1/

‰. N�uI � C 1/
‰2

h®
yı1.u; v/; y

ı
2.u; v/

¯>
I N�ııu ; � C 2

i

�
1

w 1

´
d2bıu;v

dwudwv
C

dbıu;v
dwv

�
dbıu;v
dwu

.� C 2/bıu;v

� C 1C bı2u;v
�
1

w 1

�μ

C  ¹yı1.u; v/I � C 2º

s
� C 2

1 ��ı2
u;Œ1;2	

bıu;vcu; Nk C�
ı2
u;Œ1;2	

.� C 1/�
� C 1C bı2u;v

�3=2

�‰

0
BB@
p
� C 3

°
´ı
2
.u; v/�ıı

u;Œ1;1	
� ´ı

1
.u; v/�ıı

u;Œ1;2	

±
rh

�ıı
u;Œ1;1	

®
� C 1C bı2u;v

¯
C ´ı2

1
.u; v/

i
det.�ııu /

I � C 3

1
CCA

C  ¹yı2.u; v/I � C 2º

s
� C 2

1 ���2
u;Œ1;3	

x.u; v/ N�u C�
�2
u;Œ1;3	

.� C 1/®
� C 1C bı2u;v

¯3=2

�‰

8̂̂<
ˆ̂:
p
� C 3

°
´ı
1
.u; v/�ıı

u;Œ2;2	
� ´ı

2
.u; v/�ıı

u;Œ1;2	

±
r�

�ıı
u;Œ2;2	

®
� C 1C bı2u;v

¯
C ´ı

2
.u; v/2

�
det.�ııu /

I � C 3

9>>=
>>;

1
CCA ;

(21)

where for all u; v 2 J , with u ¤ v, and Nk … ¹i; j º,

yı` .u; v/ D
´ı
`
.u; v/q
�ı
u;Œ`;`	

s
� C 2

� C 1C bı2u;v
; ` D 1; 2; ´ı1.u; v/ D cu; Nk ��

ı
u;Œ1;2	b

ı
u;v;

cu;v D �!u;v

s
� C 1

1� !2u;v
; ´ı2.u; v/ D N�u ��

ı
u;Œ1;3	; b

ı
u;vD

s
� C 1

1� !2u;v

 �
wıv
wıu

�1=�
� !u;v

!
;

�ıu D

"
N�u �ıu

�ı>u 1

#
; ı>uD

N�u

�̨
v

q
1� !2u;v; ˛k

q
1� !2

u;k

�>
; N�ııu D !

ı
u

�1=2
�ııu !

ı
u

�1=2
;
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!ıu D diag.�ııu /, �
ıı
u D �ı

u;Œ�1;�1	
� �ı

u;Œ�1;1	
�ı
u;Œ1;�1	

. Components of �ıu and �ııu are,
respectively, given by �ı

u;Œi;j 	
and �ıı

u;Œi;j 	
for i; j 2 J . See also Appendix A.4 for further

details. When � D 0 and ˛.s/ D 0, then the densities (18), (20) and (21) reduce to the densities
of the extremal-t dependence model. A graphical illustration that shows the difference between
the two dependence models is provided in the Supporting Information.

Therefore, for d D 3, the estimation of dependence parameters can be based on the following
approach. Let ¹.ri ; wi / W i D 1; : : : ; nº be the set of observations, where ri D

P
j2I xi;j and

wi D xi=ri , with xi D .xi;j /j2I , are pseudo-polar radial and angular components. Then the
approximate log-likelihood is defined by

`.# I Qw/ D
X

iD1;:::;nW
ri>r0

log h.wi I#/; (22)

where Qw D .w1; : : : ; wn/
>, for some radial threshold r0 > 0, and where h is the angular

density function of the extremal skew-t dependence model. The components of the sum in
(22) comprise the three types of angular densities lying on the interior, edges and vertices of
the simplex. Whether an angular component belongs either to the interior, an edge or a ver-
tex of the simplex, producing the associated density is determined according to the following
criterion. We select a threshold c 2 Œ0; 0:1
, and we construct the following partitions for an
arbitrary observation wi D .wi;j ; wi;k ; wi;l /, i D 1; : : : ; n. Set w � wi for simplicity. When
Cj D ¹wj > 1� cI j 2 I º, then an observation belongs to vertex ej . When Ej;k D ¹wj ; wk <
1 � c; wl < c;wj > 1 � 2wk ; wk > 1 � 2wj I j 2 I; k 2 Ij ; l 2 Ij n¹kºº, then an observa-
tion belongs to edge between the j th and kth components. When I D ¹wj > cI j 2 I º, then
an observation belongs to the interior (see the Supporting Information for more details). The
components of the angular density h.w/ then require rescaling so that they satisfy the con-
straints of valid angular densities – namely that they integrate to the number of components of
w (three in the trivariate case) – while also respecting the partition of W implied by c. With-
out this rescaling, then the likelihood of, for example, the model that places mass on all subsets
of the simplex is not comparable with that of models that places mass only on subsets of the
simplex. Specifically

Z
W

h.w/dw D KC
X
j2I

Z
Cj
h3;¹jºdw C

X
jD1;2
kDjC1;3

KEj;k

Z
Ej;k

h3;¹j;kº.w/dw

CKI

Z
I
h3;¹1;2;3º.w/dw D 3;

where

KC D
4
p
3c2

; KEj;k D
2
R 1
0
h3;¹j;kº.w/dw

c
p
3.1 � 2c/

; KI D

R 1
0

R 1
0
h3;¹1;2;3º.w/dwR 1�2c

c

R 1�2c
c

h3;¹1;2;3º.w/dw
;

and h3;¹jº, h3;¹j;kº.w/ and h3;¹1;2;3º.w/ are defined earlier. Note that for j; k 2 I with j ¤
k, we have that h3;¹j;kº.w/ D h3;¹k;jº.w/. In the bivariate case (d D 2), the appropriate
modification only considers the mass on the vertices and interior.

We now illustrate the ability of the approximate likelihood in estimating the extremal depen-
dence parameters in the bivariate and trivariate cases. We generate 500 replicate datasets of
sizes 5000 (bivariate) and 1000 (trivariate), with parameters #2 D .!; �/ D .0:6; 1:5/ and
#3 D .!1;2; !1;3; !2;3; �/ D .0:6; 0:8; 0:7; 1/. Each dataset is transformed to pseudo-polar
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Scand J Statist 44 Extremal dependence models 35

coordinates, and the 100 observations with the largest radial component are retained. Param-
eters are estimated through the profile likelihood where the dependence parameter ! is the
parameter of interest and the degree of freedom � is considered as a nuisance parameter.
Parameters are estimated for different values of the threshold c D 0; 0:02; 0:04; 0:06; 0:08; 0:1.
In order to compare likelihoods for different values of c, the likelihood functions are evaluated
using those data points considered to belong to the interior of the simplex, multiplied by the
mass at the corners and/or edges in proportion to their rescaling constants.

Figures 4 and 5 provide (left to right) boxplots of the resulting estimates of the dependence
parameter(s) !, the degree of freedom � and of the likelihood function for increasing values
of c, for the 500 replicate datasets for both bivariate and trivariate cases. The true parameter
values are indicated by the horizontal lines.

Fig. 4. Left to right: Boxplots of the estimates of the dependence parameter !, the degree of freedom
� and the associated maximum of the likelihood function based on the rescaled angular density, when
c D 0; 0:02; 0:04; 0:06; 0:08 and 0.1. Boxplots are constructed from 500 replicate datasets of size 5000.
Horizontal lines indicate the true values ! D 0:6 and � D 1:5.

Fig. 5. Left to right: Boxplots of the estimates of the dependence parameter ! D .!1;2; !1;3; !2;3/, the
degree of freedom � and the associated maximum of the likelihood function based on the rescaled angular
density, when c D 0; 0:02; 0:04; 0:06; 0:08 and 0.1. Boxplots are constructed from 500 replicate datasets
of size 1000. Horizontal lines indicate the true values !1;2 D 0:6;!1;3 D 0:7;!2;3 D 0:7 and � D 1.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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36 B. Beranger et al. Scand J Statist 44

In the rightmost panel of each figure, the largest values of the log-likelihood are globally
obtained for c D 0:02, for which the most accurate estimates of ! and � are also obtained.
Conditional on c D 0:02, the mean estimates are O! D 0:55 and O� D 1:79 in the bivariate
case and O! D .0:62; 0:80; 0:71/ and O� D 1:27 in the trivariate case. Note that the degree of
freedom � appears to be slightly overestimated and appears to be better estimated for slightly
larger values of c. Overall, this procedure appears capable of efficiently estimating the model
parameters. Note that increased precision of estimates can be obtained by considering a denser
range of threshold values c.

An independent study comparing the efficiency of the maximum pairwise and triplewise
composite likelihood estimators is provided in the Supporting Information.

5. Application to wind speed data

We illustrate the use of the extremal skew-t process using wind speed data (the weekly maximum
wind speed in km/h), collected from four monitoring stations across Oklahoma, USA, over
the March–May period during 1996–2012, as part of a larger dataset of 99 stations. An anal-
ysis establishing the significant marginal, station-specific skewness of these data is presented
in the Supporting Information. Here, we focus on the dependence structure between stations,
where for simplicity, the data are marginally transformed to unit Fréchet distributions. Only
extremal-t and extremal skew-t models are considered, and parameter estimation is performed
via pairwise composite likelihoods as detailed at the beginning of Section 4.

Model comparison is performed through the composite likelihood information criterion
(CLIC; Varin et al., 2011) given by

CLIC D �2
h
`2. O# I x/ � tr

°
OJ . O#/ OH. O#/�1

±i
;

where O# is the maximum composite likelihood estimate of # , `2. O# I x/ is the maximized pairwise
composite likelihood and OJ and OH are estimates of J.#/ D VarU .r`2.# IU// and H.#/ D
EU .�r

2`2.# IU//, the variability and sensibility (hessian) matrices, where U is a bivariate
random vector with extremal skew-t distribution.

Table 1 presents the pairwise composite likelihood estimates of ! D .!12; !13; !23/,
˛ D .˛1; ˛2; ˛3/ and � for the extremal-t and extremal skew-t models, obtained for all triple-
wise combinations of the four locations CLOU, CLAY, PAUL and SALL. For each triple, the

Table 1. Pairwise composite likelihood estimates O# D . O!; O�/ and O# D . O!; Ǫ ; O�/ of the extremal-t (ext-t)
and extremal skew-t (ex-skew-t) models, respectively, for all possible triplets of the four locations CLOU,
CLAY, PAUL and SALL. Standard errors (se) are shown for Ǫ only

Stations Model O! Ǫ O� CLIC

(CLOU,CLAY,SALL) ex-t .0:67; 0:57; 0:69/ — 2.89 5395.73
ex-skew-t .0:42; 0:74; 0:52/ .�0:80; 2:88;�0:23/ 2.06 5385.07

se: .0:04; 0:14; 0:03/

(CLOU,CLAY,PAUL) ex-t .0:59; 0:50; 0:69/ — 2.53 5503.54
ex-skew-t .0:45; 0:29; 0:65/ .�0:68; 21:07; 23:41/ 2.16 5496.90

se: .0:05; 0:97; 1:09/

(CLAY,SALL,PAUL) ex-t .0:65; 0:61; 0:53/ — 1.55 5086.13
ex-skew-t .0:56; 0:51; 0:39/ .3:55; 2:36; 8:49/ 1.29 5075.87

se: .0:17; 0:15; 0:63/

(CLOU,SALL,PAUL) ex-t .0:37; 0:40; 0:42/ — 1.88 5428.04
ex-skew-t .0:29; 0:30; 0:37/ .�0:14; 1:04; 34:70/ 2.11 5419.27

se: .0:03; 0:02; 3:49/

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.

 14679469, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12240 by U

niversity of N
ew

 South W
ales, W

iley O
nline L

ibrary on [04/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Scand J Statist 44 Extremal dependence models 37

Table 2. Extremal-t and extremal skew-t conditional probabilities of exceeding particular fixed thresholds of
the form Pr.X > x j Y > y;Z > ´/ and Pr.X > x;Y > y j Z > ´/, along with empirical estimates. The
wind speed thresholds .x; y; ´/ are constructed from the marginal quantiles q70 D .q70CO; q

70
CA; q

70
SA ; q

70
PA / D

.18:04; 20:33; 24:18; 23:61/ and q90 D .q90CO; q
90
CA; q

90
SA ; q

90
PA / D .22:11; 24:33; 29:05; 28:26/ at

each location

Threshold Extremal-t Extremal skew-t Empirical (95% confidence intervals)

X j Y;Z
�
q90CO; q

70
CA; q

70
PA

�
0.2587 0.2737 0:3333 .0:2706; 0:3960/�

q90SA ; q
70
CA; q

70
PA

�
0.3268 0.3305 0:2973 .0:2356; 0:3590/�

q90PA ; q
70
CA; q

70
SA

�
0.3752 0.3356 0:2857 .0:2247; 0:3467/�

q90CO; q
70
SA ; q

70
PA

�
0.2686 0.3150 0:3333 .0:2706; 0:3960/

X;Y j Z
�
q90CO; q

90
CA; q

70
SA

�
0.1196 0.0789 0:0781 .0:0420; 0:1142/�

q90CA; q
90
PA ; q

70
CO

�
0.1236 0.0776 0:0938 .0:0546; 0:1330/�

q90CO; q
90
SA ; q

70
PA

�
0.0896 0.1048 0:0938 .0:0550; 0:1326/�

q90SA ; q
90
PA ; q

70
CO

�
0.1038 0.1071 0:0769 .0:0415; 0:1123/

extremal skew-t model achieves a lower CLIC score than the extremal-t model, indicating its
greater suitability. Moreover, the standard errors of the estimated slant parameters Ǫ clearly
indicate that these parameters are non-zero, strengthening the argument of a significantly better
fit from the extremal skew-t model.

For each location triple .X; Y;Z/, we can also evaluate the conditional probability of exceed-
ing some fixed threshold .x; y; ´/ using each parametric model. Table 2 presents estimated
probabilities of the two cases Pr.X > x j Y > y;Z > ´/ and Pr.X > x; Y > y j Z > ´/; along
with the associated empirical probabilities and their 95% confidence intervals (CI) for a range
of thresholds. For these specific thresholds, the extremal skew-t model provides estimates of the
conditional probabilities that fall within the 95% empirical CI. However, four probabilities esti-
mated with the extremal-t model are not consistent with the empirical CI. This indicates that
the additional flexibility of the extremal skew-t model allows it to more accurately characterize
the dependence structure evident in the observed data.

Finally, Fig. 6 provides examples of univariate (top panels) and bivariate (bottom) condi-
tional return levels for each triple of sites. The return levels are computed conditionally on
the wind at the remaining station(s) being higher than their upper 70% marginal quantile. For
the univariate conditional return levels (top panels), both the extremal-t and extremal skew-t
model fits are strongly influenced by the windspeed outlier of � 40 km/h observed at CLAY
station (centre two panels). This phenomenon, whereby the far tails of extremal model fits can
be dominated by a single extreme outlier, is not uncommon in practice (e.g. Coles et al., 2003).
Being the more flexible model, the extremal skew-t model is better able to follow this extreme
outlier compared with the extremal t . When the outlier is not present (in the two outer panels),
the extremal skew-t model provides a better visual fit to the observed data and spends more
time within the empirical CI, indicating a superior model fit.

The primary differences in the bivariate conditional return levels (bottom panels, Fig. 6) are
the possibility of asymmetric contour levels under the extremal skew-t model (dot-dashed blue
line) in contrast with symmetric contours under the extremal-t model (dotted red line). The
difference is more noticeable in the leftmost and rightmost panel. The leftmost panel indicates
lower return levels for the extremal skew-t model, which occurs because (CLOU, SALL) have
negative slant parameters (Table 1, top row), and so the joint tail is shorter than that of the
extremal t . Conversely, the rightmost panel exhibits larger return levels for the extremal skew-
t model, as a result of the small negative and very large slant parameters for (CLOU, PAUL)
(Table 1, bottom row), and so the joint tail is longer than that of the extremal-t . The differences

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 6. Univariate (top row) and bivariate (bottom) conditional return levels for the triples (left to right):
(CLOU, CLAY, SALL), (CLOU, CLAY, PAUL), (CLAY, SALL, PAUL) and (CLOU, SALL, PAUL).
Dotted red and dot-dashed blue lines, respectively, indicate return levels calculated from extremal-t and
extremal skew-t models. Points indicate the empirical observations and the black dashed lines their 95%
confidence interval. [Colour figure can be viewed at wileyonlinelibrary.com]

in the centre two panels are less pronounced. For the second panel, the slant parameters of
(CLOU, PAUL) similarly take a large positive and a small negative value (Table 1, row 2).
However, as the parameter for CLAY is also a large positive value, this means that there is
little difference between the joint tails of the two models. Finally, for the third panel, the slant
parameters of (CLAY, PAUL, SALL) are relatively small and positive (Table 1, row 3), and so
there is little difference between the joint tails of the two models.

In summary, for these wind speed data, the more flexible extremal skew-t model is demon-
strably superior to the extremal-t model in describing the extremes of both the univariate
marginal distributions and the extremal dependence between locations.

6. Discussion

Appropriate modelling of extremal dependence is critical for producing realistic and precise
estimates of future extreme events. In practice, this is a hugely challenging task, as extremes
in different application areas may exhibit different types of dependence structures, asymptotic
dependence levels, exchangeability and stationary or non-stationary behaviour.

Working with families of skew-normal distributions and processes, we have derived flexible
new classes of extremal dependence models. Their flexibility arises as they include a wide range
of dependence structures, while also incorporating several previously developed and popular
models, such as the stationary extremal-t process and its sub-processes, as special cases. These
include dependence structures that are asymptotically independent, which is useful for describ-
ing the dependence of variables that are not exchangeable, and a wide class of non-stationary,
asymptotically dependent models, suitable for the modelling of spatial extremes.

In terms of future development, semi-parametric estimation methods would provide pow-
erful techniques to fully take advantage of the flexibility offered by non-stationary max-stable
models. Such methods can be computationally demanding, however. An interesting further

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 44 Extremal dependence models 39

direction would be to design simple and interpretable families of covariance functions for skew-
normal processes for which it is then possible to derive max-stable dependence models that are
useful in practical applications.

The code used to perform the simulations studies and real data analysis in Sections 4 and 5
as well as in the Supporting Information is available in the R (R Core Team, 2014) package
ExtremalDep (Beranger et al., 2015) available at https://r-forge.r-project.org/
R/?group_id=1998.
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Appendix A: Proofs

A.1. Proof of Proposition 1

Items (1)–(3) are easily derived following the proof of Propositions (1)–(4) of Arellano-Valle &
Genton (2010) and taking into account the next result.

Lemma 1. Let Y D .Y>
1
; Y>
2
/> � Td .�;�; �; �/, where Y1 2 R and Y2 2 R

d�1 with the
corresponding partition of the parameters .�;�; �/ and � D .�1; 0>/> with �1 2 R. Then,

.Y1 j Y2 D y2/ � T .�1�2; �11�2; �1�2; �1�2/; y2 2 R
d�1

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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where �1�2 D �1 C �12�
�1
22
.y2 � �2/, �1�2 D 	2�11�2, 	2 D ¹� C Q��122 .´2/º=.� C d2/,

´2 D !�1
2
.y2 � �2/=�2, !2 D diag.�22/1=2, �11�2 D �11 ��12�

�1
22
�21, �1�2 D 	

�1=2
2

�,
�1�2 D � C d � 1.

Proof of Lemma 1. The marginal density of Y2 is equal to

fY2.y2/ D

Z 1
0

v�=2�1e�v

.�=2/
�d�1

0
B@y2 � �2q

�
2v

I�22

1
CA�2v

�

�.d�1/=2
dv D  d�1.y2I�2; �22; �/;

namely, it is a .d � 1/-dimensional central t pdf. The joint density of Y is equal to

fY2.y2/fY1jY2Dy2.y1/ D  d�1.y2I�2; �22; �/

Z 1
0

v.�Cd�1/=2�1e�v�
�Cd�1
2

�

�

´
.�1�2/

�1=2.y1 � �1�2/

r
2v

� C d � 1
� .�11�2/

�1=2�1

μ
dv

D

Z 1
0

.�11�2/
�1=2v�=2�1e�v�

�
2

� �
2v

�

�d=2
�d�1

0
B@y2 � �2q

�
2v

1
CA

�

´
.�11�2/

1=2 .y1 � �1�2/

r
2v

�
� �1

μ
dv

D

Z 1
0

v�=2�1e�v�
�
2

� �d

´ 
y1 � �1 � �1

q
�
2v

y2 � �2

!
I

r
�

2v
�

μ
dv:

A.2. Proof of Proposition 2

Let Z � ST .˛; �; �; �/. Then 1 � ‰.xI˛; �; �/ 	 x��L .xI˛; �; �/ as x ! C1, for any
� > 1, where

L .xI˛; �; �; �/ D
¹.� C 1/=2º‰.˛

p
� C 1I � C 1/

.�=2/
p

�3=2‰.�=

p
1C ˛2I �=

p
1C ˛2; �/

�
1

x2
C
1

�

��.�C1/=2

is a slowly varying function (e.g. de Haan & Ferreira, 2006, Appendix B). From Corollary
1.2.4 in de Haan & Ferreira (2006), it follows that the normalization constants are an D
‰ .1 � 1=nI˛; �; �; �/, where ‰ is the inverse function of ‰ and bn D 0, and therefore
an D ¹nL .˛; �; �; �/º1=� , where L .˛; �; �; �/ � L .1I˛; �; �; �/. Applying Theorem 1.2.1 in
de Haan & Ferreira (2006), we obtain that Mn=an ) U , where U has �-Fréchet univariate
marginal distributions.

Let Z � STd . N�;˛; �; �; �/. For any j 2 ¹1; : : : ; dº, consider the partition Z D .Zj ; Z>Ij /
>,

where Ij D ¹1; : : : ; dºnj and Zj D Z¹jº and the respective partition of . N�;˛/. Define
an D .an;1; : : : ; an;d /, where an;j D ¹nL .˛�

j
; ��
j
; ��
j
; �/º1=� and ˛�

j
D ˛�
¹jº

, ��
j
D ��
¹jº

and
��
j
D ��
¹jº

are the marginal parameters (5) under Proposition 1 (1). From Theorem 6.1.1 and
Corollary 6.1.3 in de Haan & Ferreira (2006), Mn=an ) U , where the distribution of U is
G.x/ D exp¹�V.x/º with V.x/ D limn!C1 n¹1 � Pr.Z1 
 an;1x1; : : : ; Zd 
 an;dxd /º for
all x D .x1; : : : ; xd /> 2 R

d
C

. Applying the conditional tail dependence function framework of
Nikoloulopoulos et al. (2009), it follows that

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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V.xj ; i 2 I / D lim
n!1

dX
jD1

x��j Pr.Zi 
 an;ixi ; i 2 Ij j Zj D an;jxj /:

From the conditional distribution in Proposition 1 (1), we have that

8<
:
 

Zi � an;jxj

¹	n;j .1 � !
2
i;j
/º1=2

; i 2 Ij

!>
j Zj D an;jxj

9=
; � STd�1

�
N�C
j
; ˛C
j
; �n;j ; �n;j ; � C 1

�
;

for j 2 : : : 1; : : : ; d , where N�C
j
D !�1

Ij Ij �j
�Ij Ij �j!

�1
Ij Ij �j

, !Ij Ij �j D diag.�Ij Ij �j /
1=2,

N�Ij Ij �j D
N�Ij Ij �

N�Ij j
N�jIj , ˛C

j
D N�Ij Ij �j˛Ij 	n;j D Œ� C .an;jxj /

2
=.� C 1/; �n;j D

Œ. N�jIj ˛Ij C ˛j /an;jxj C �
=	
1=2

n;j
and �n;j D �=	

1=2

n;j
: Now, for any j 2 ¹1; : : : ; dº and

all i 2 Ij

an;ixi � an;jxj°
	n;j

�
1 � !2

i;j

�±1=2 !
�
xC
i
=xC
j
� !i;j

�
.� C 1/1=2

¹.1 � !i;j /º1=2
as n!C1;

where !i;j is the .i; j /-th element of N�, xC
j
D xjL 1=�.˛�

j
; ��
j
; ��
j
; �/ and �n;j ! �C

j
D

. N�jIj ˛Ij C ˛j /.� C 1/
1=2; and �n;j ! 0 as n!C1. As a consequence

V.xj ; j 2 I / D

dX
jD1

x��j ‰d�1

0
@ s � C 1

1 � !2
i;j

 
xC
i

xC
j

� !i;j

!
; i 2 Ij

!>
I N�C
j
; ˛C
j
; �C
j
; � C 1

1
A :

A.3. Proof of Proposition 4

Recall that if Z � SN2. N�;˛/, then Zj � SN .˛�
j
/ and Zj j Z3�j � SN .˛j �3�j / for

j D 1; 2 (e.g. Azzalini, 2014, Ch. 2, or Proposition 1), where

˛�j D
˛j C !˛3�jq
1C ˛2

3�j
.1 � !2/

; ˛j �3�j D ˛j

p
1 � !2:

Define xj .u/ D ˆ .1 � uI˛�
j
/, for any u 2 Œ0; 1
, where ˆ .�I˛�

j
/ is the inverse of

the marginal distribution function ˆ.�I˛�
j
/, j D 1; 2. The asymptotic behaviour of xj .u/ as

u! 0 is

xj .u/ D

´
x.u/; if˛�

j
� 0

x.u/= N̨j � ¹2 log.1=u/º�1=2 log
�p


˛�
j

�
; if˛�

j
< 0

(23)

for j D 1; 2, where N̨j D ¹1 C ˛�2
j
º1=2 and x.u/ 	 ¹2 log.1=u/º1=2 �

¹2 log.1=u/º�1=2¹log log.1=u/Clog.2
p

/º (Padoan, 2011). The limiting behaviour of the joint

survivor function of the bivariate skew-normal distribution is described by

p.u/ D Pr¹Z1 > x1.u/;Z2 > x2.u/º; u! 0: (24)

For case (a), when ˛1; ˛2 > 0, then x1.u/ D x2.u/ D x.u/, and the joint upper tail (24)
behaves as

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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p.u/ D

Z 1
x.u/

²
1�ˆ

�
y.u/� !v
p
1� !2

I˛1�2

�³
�.vI˛�2 /dv

�

p
1� !2

x.u/

Z 1
0

�2.x.u/; x.u/C t=x.u/I N�;˛/

x.u/.1� !/� !t=x.u/
dt

�
e�x

2.u/=.1C!/

	.1� !/x2.u/

 Z 1
0

e�t=.1C!/dt �
e�x

2.u/.˛1C˛2/
2=2

p
2	.˛1 C ˛2/x.u/

Z 1
0

e�t¹1=.1C!/C˛2.˛1C˛2/ºdt

!

D
e�x

2.u/=.1C!/.1C !/

	.1� !/x.u/2

 
1�

e�x
2.u/.˛1C˛2/

2=2

p
2	.˛1 C ˛2/¹1C ˛2.˛1 C ˛2/.1C !/ºx.u/

!
;

(25)

as u! 0. The first approximation is obtained by using 1 �ˆ.xI˛/ 	 �.xI˛/=x as x ! C1,
when ˛ > 0 (Padoan, 2011). The second approximation uses 1 �ˆ.x/ 	 �.x/=x as x ! C1
(Feller, 1968). Let Xj D ¹�1= logˆ.Zj I˛�j /º, j D 1; 2. Substituting x.u/ into (25), substitut-
ing and using the approximation 1�Pr.Xj > x/ 	 1=x as x !1, j D 1; 2, we obtain that (24)
with common unit Fréchet margins behaves asymptotically as L .x/ x�2=.1C!/; as x !C1;
where

L .x/ D
2.1C !/.4
 log x/�!=.1C!/

1 � !

 
1 �

.4
 log x/¹.˛1C˛2/
2�1º=2 x�.˛1C˛2/

2

.˛1 C ˛2/¹1C ˛2.˛1 C ˛2/.1C !/º

!
:

(26)

As the second term in the parentheses in (26) is o.x.˛1C˛2//, then the quantity inside the
parentheses! 1 rapidly as x !1, and so L .x/ is well approximated by the first term in (26).
When ˛2 < 0 and ˛1 � �˛2=!, then ˛�

1
; ˛�
2
> 0, and we obtain the same outcome.

For case (b), when ˛2 < 0 and �!; ˛2 
 ˛1 < �!�1˛2, then ˛�
1
� 0 and ˛�

2
< 0, and hence

x1.u/ D x.u/ and x2.u/ 	 x.u/= N̨2 as u ! 0. When ˛1 > � N̨2˛2, then following a similar
derivation to those in (25), we obtain that

p.u/ 	
N̨2
2
.1 � !2/.1 � ! N̨2/

�1


. N̨2 � !/x2.u/
exp

"
�
x2.u/

2

´
1 � !2 C . N̨2 � !/

2

.1 � !2/ N̨2
2

μ#
; as u! 0:

Similarly, when ˛1 < � N̨2˛2, and noting that ˆ.x/ 	 ��.�x/=x as x ! �1, then

p.u/ �
� N̨22¹1� ! N̨2 C ˛2.˛2 C ˛1 N̨2/.1� !

2/º�1

	. N̨2 � !/.1� !2/�1.˛1 C ˛2= N̨2/x3.u/
e
�
x2.u/
2

´
1�!2C. N̨2�!/

2

.1�!2/ N̨2
2

C

�
˛1C

˛2
N̨2

�2μ
; as u! 0:

For case (c), when ˛2 < 0 and 0 < ˛1 < �!˛2, then ˛�
1
; ˛�
2
< 0, and hence x1.u/ 	 x.u/= N̨1

and x2.u/ 	 x.u/= N̨2 as u! 0. Then, as u! 0, we have

p.u/ �
� N̨

3=2

2 N̨21.1� !
2/. N̨2 � ! N̨1/

�1.˛1 N̨2 C ˛2 N̨1/
�1

	¹1� ! N̨2 C ˛2.˛2 C ˛1 N̨2= N̨1/.1� !2/ºx3.u/

� exp

"
�

x2.u/

2.1� !2/

 
˛21.1� !

2/C1

N̨21
C
˛22.1� !

2/C1

N̨22
C
2.˛1˛2.1� !

2/� !/

N̨1 N̨2

!#
u! 0:

When ˛1; ˛2 < 0 and !�1
2
˛2 
 ˛1 < 0, the same argument holds. Finally, interchang-

ing ˛1 with ˛2 produces the same results, but substituting ˛j and N̨j with ˛3�j and N̨3�j ,
respectively, for j D 1; 2:

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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A.4. Proof of Theorem 1

Let Y.s/ be a skew-normal process with finite-dimensional distribution SNd . N�;˛; �/. For any
j 2 I D ¹1; : : : ; dº, consider the partition Y D .Yj ; Y

>
Ij
/>, where Ij D Inj , Yj D Y¹jº D

Y.sj / and YIj D .Yi ; i 2 Ij /
> and the respective partition of . N�;˛/. The exponent function

(14) is

V.xj ; j 2 I / D E

"
max
j

´
.YC
j
=xj /

�

mC
j

μ#
D

Z
Rd

max
j

´
.yj =xj /

�

mC
j

; 0

μ
�d .yI N�I˛; �/dy;

where xj � x.sj /, yj � y.sj / and mC
j
� mC.sj /. Then

V.xj ; j 2 I / D

dX
jD1

Vj ; Vj D
1

mC
j

Z 1
0

�
yj

xj

�� Z yjxIj =xj
�1

�d .yI N�I˛; �/dyIj dyj ;

(27)

where xIj D .xi ; i 2 Ij /
> and yIj D .yi ; i 2 Ij /

>. As Yj � SN .˛�
j
; ��
j
/, where ˛�

j
D ˛�
¹jº

and ��
j
D ��
¹jº

are the marginal parameters derived from Proposition 1(1), then

mC
j
D

Z 1
0

y�j �
�
yj I˛

�
j ; �
�
j

�
dyj D

1

ˆ

²
��
j

�
1C ˛�2

j

��1=2³
Z 1
0

y�j �.yj /ˆ
�
˛�jyj C �

�
j

�
dyj

D
2.��2/=2¹.� C 1/=2º‰

�
˛�
j

p
� C 1I ���

j
; � C 1

�
p

ˆŒ�¹1CQ N�.˛/º

�1=2


by observing that ��
j
¹1C ˛�2

j
º1=2 D �¹1CQ N�.˛/º

�1=2.

For j D 1; : : : ; d , define xı
j
D xj .m

C

j
/1=� and mC

j
D NmC

j
=ˆŒ�¹1 CQ N�.˛/º

�1=2
; where

NmC
j
D .
/1=22.��2/=2¹.� C 1/=2º‰.˛�

j

p
� C 1I ���

j
; � C 1/: Then, for any j D 1; : : : ; d

Vj D
1

mC
j

Z 1
0

�
yj

xj

�� Z yjxIj =xj
�1

�d
�
yI N�;˛; �

�
dyIj dyj

D
1

NmC
j

Z 1
0

�
yj

xj

�� Z yjxIj =xj
�1

�d .yI�/ˆ
�
˛>y C �

�
dyIj dyj

D
1

NmC
j

Z 1
0

�
yj

xj

��
�.yj /

Z yjxIj =xj
�1

�d�1
�
yIj �yj

N�j;Ij I
N�ıj
�
ˆ
�
˛>yC�

�
dyIj dyj

D
1

NmC
j

Z 1
0

�
yj

xj

��
�.yj /ˆd

�
yıj I�

ıı
j

�
dyj ;

where

yıj D

 
yj !

�1
Ij Ij �j

�
xı
Ij
=xı
j
� N�Ij j

�
yj˛
�
j
C ��

j

!
;

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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with !Ij Ij �j D diag. N�Ij Ij �j /
1=2, N�Ij Ij �j D N�Ij Ij �

N�Ij j
N�jIj , yj˛�j C ��

j
D

yj .˛jC N�
�1
jj
N�jIj ˛Ij /C�

¹1CQ N�Ij Ij �j
.˛Ij /º

1=2 and

�ııj D

0
BBBBBB@

N�ı
j

�
N�Ij Ij �j!

�1
Ij Ij �j

˛Ij²
1CQ N�Ij Ij �j

�
˛Ij

�³1=2

�

0
B@ N�Ij Ij �j!

�1
Ij Ij �j

˛Ij²
1CQ N�Ij Ij �j

�
˛Ij

�³1=2
1
CA
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1
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where N�ı
j
D !�1

Ij Ij �j
N�Ij Ij �j !

�1
Ij Ij �j

and
�Ij Ij �j!

�1
Ij Ij �j

˛Ij²
1CQ�Ij Ij �j

.˛Ij /

³1=2 D �ı
j
!Ij Ij �j ˛Ij²

1CQ N�ı
j
.!Ij Ij �j ˛Ij /

³1=2 :
Applying Dutt’s (Dutt, 1973) probability integrals, we obtain

Vj D
1
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j

Z 1
0

�
yj

xj

��
�.yj /ˆd

�
yıj I�

ıı
j

�
dyj ;

D
1

x�
j

‰dC1

0
@  r �C1

1�!2
i;j

�
xı
i

xı
j

� !i;j

�
; i 2 Ij

!
; ˛�
j

p
� C 1

!>
I�ıı
j
;
�
0;���

j

�>
; �C1

1
A

‰
�
˛�
j

p
� C 1I ���

j
; � C 1

� :

This is recognized as the form of a .d � 1/-dimensional non-central extended skew-t dis-
tribution with � C 1 degrees of freedom (Jamalizadeh et al., 2009), from which Vj can be
expressed as

Vj D
1

x�
j

‰d�1

0
@ s � C 1

1 � !2
i;j

 
xı
i

xı
j

� !i;j

!
; i 2 Ij

!>
I N�ıj ; ˛

ı
j ; �
ı
j ; �
ı
j ; � C 1

1
A

for j D 1; : : : ; d , where ˛ı
j
D !Ij Ij �j ˛Ij , �ı

j
D . N�jIj ˛Ij C ˛j /.� C 1/1=2 and �ı

j
D

�
°
1CQ N�Ij Ij �j

.˛Ij /
±�1=2

� . Substituting the expression for Vj into (27) then gives the

required exponent function.
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