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Likelihood-Based Inference for Modelling Packet
Transit From Thinned Flow Summaries

Prosha Rahman“?, Boris Beranger

Abstract—Network traffic speeds and volumes present practical
challenges to analysis. Packet thinning and flow aggregation proto-
cols provide smaller structured data summaries, but conversely im-
pede statistical inference. Methods which model traffic propagation
typically do not account for the packet thinning and aggregation
in their analysis and are of limited practical use. We introduce a
likelihood-based analysis which fully incorporates packet thinning
and flow aggregation. Inferences can hence be made for models on
the level of individual packets while only observing thinned flow
summaries. We establish consistency of the resulting maximum
likelihood estimator, derive bounds on the volume of traffic which
should be observed to achieve a desired degree of efficiency, and
identify an ideal family of models. The robust performance of the
estimator is examined through simulated analyses and an applica-
tion on a publicly accessible trace which captured in excess of 36 m
packets over a 1 minute period.

Index Terms—Network analysis, NetFlow, Flow aggregation,
Traffic sampling, Symbolic Data Analysis.

1. INTRODUCTION

ETWORK traffic volumes and speeds have grown expo-
N nentially since the inception of the internet [1]. Record-
ing and analysing such volumes is impractical and frequently
computationally infeasible. Accounting compromises such as
flow aggregation and packet thinning are typically employed to
mitigate such volume [2].

Internet traffic is comprised of packets which are distributed
amongst flows. Packets are small quantums of information
which, when grouped with other relevant packets, form dig-
ital objects. The temporal sequence of a group of packets is
called a flow. Flow aggregation is a concession whereby broad
flow characteristics — such as the flow size, start time, and
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duration — are recorded instead of individual packet informa-
tion. Commonly used protocols include IPFIX and NetFlow (here
we use NetFlow as a general term to denote flow aggregates).
NetFlows reduce the volume of information as each flow is
summarised into typically eight numbers [2].

Packet thinning is a parallel strategy whereby only select
packets are recorded. Thinning techniques include flow sam-
pling [3], adaptive sampling, and simple random sampling [4].
We shall consider Bernoulli sampling, where packets are in-
dependently recorded with some constant known probability g
[2]-[4]. In practice, sampling rates can be tuned to match the
density and speed of traffic in the network. Flow aggregation
can then be analogously applied to thinned traffic.

Such data retention strategies need to be considered explicitly
when analysing the summarised data, since bias, and other
errors, may otherwise arise. In traffic classification, for example,
basic analysis on thinned traffic will over-represent large media
applications such as video streaming since these flows are sig-
nificantly larger. Smaller but more numerous applications, such
as e-mails, will conversely be under-represented.

Many of the more sophisticated network analysis techniques
exclusively address either flow aggregation [S] or packet thin-
ning, but fail to jointly consider both [3], [6], [7]. Analyses
which have mutually addressed packet thinning and flow aggre-
gation have assessed network volume (number of packets in the
network) and traffic classification (types of digital objects) [5],
[8]. In contrast, we wish to perform parametric inference on
patterns of traffic propagation when observing only NetFlows
obtained from thinned traffic. More simply, we wish to assess the
models which influence the timing of packet arrivals within the
network.

In this article, we adapt recent results of [9] and [10] in
Symbolic Data Analysis (SDA) to develop a likelihood-based
approach for modelling packet-level network traffic. The result-
ing NetFlow likelihood incorporates packet thinning and flow
aggregation within a generative framework. As a result, we are
able to fit models and make inference on packet-level traffic
patterns when observing only flow-level summaries, including
those constructed from packet thinned traffic.

We also make three key contributions within the traffic mod-
elling and SDA literature. We first demonstrate that the Net-
Flow maximum likelihood estimator attains the consistency
and asymptotic Normality typical of standard likelihood es-
timators computed using complete data. These are the first
such results for SDA likelihood-based methods. We then provide
comparative bounds on the loss of information from the ag-
gregation and thinning procedures. From this, we are able to
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identify a lower bound on the minimum number of (packet
thinned) flow aggregates required to produce an estimator which
approximates the efficiency of the MLE computed on complete
data. We also identify a family of models for which inference
on the aggregated and complete data are identical. Finally, we
introduce an extension of the moments-based estimators of [6]
for NetFlow data in order to facilitate comparison with existing
approaches.

Despite its many desirable properties, the NetFlow estimator
requires higher computational overheads compared to statis-
tically simpler approaches such as the method of moments.
Further, computation of the estimator under packet thinning also
requires estimation, or prior knowledge, of the distribution of the
flow sizes; although an empirical approximation of this can be
obtained relatively easily in practice.

This article is structured as follows. We first provide some
background to existing methods of network analysis, the as-
sumed packet transit model, and our framework of analysis
(SpA) in Section II. A mathematical representation of the Net-
Flow is presented Section III, which then allows us to de-
fine parametric NetFlow likelihoods for complete and thinned
traffic. We then provide two of our key contributions, consis-
tency and relative information loss, in Section IV. Our third
contribution, the optimal family of models, is presented in
Section V. Sections VI and VII are respectively dedicated to
comparative analyses of the NetFlow estimator on synthetic
data, and an application to real data. We finally conclude with
a discussion.

II. RELATED WORK
A. Existing Methods for Traffic Analyses

Significant progress has been made on methods for assessing
network volume [7], [11]-[16] and traffic classification [8], [17],
[18]. Inferential methods for analysing traffic timing, however,
are less developed. Existing approaches such as series inver-
sion [3], [7], wavelets [6], [19], empirical distributional estima-
tion [20], cluster analysis [21], time series [22], and principal
component analysis [23] typically fit models using empirical
characteristics. In some cases, the intention is to simply de-
tect deviations from typical traffic behaviour [5], [19], [24] or
produce elementary network statistics [24], [25]. [6] and [26]
provide simple statistical schemes whereby the parameters of
a particular family of models could be identified using the
method-of-moments.

Methods which are applicable to thinned network traffic, and
other adversarial contexts, tend to focus on estimating network
volume [11], [14], [15]. However, those which assess packet
propagation are limited in their flexibility and inferential use
since they typically fit secondary characteristics such as mo-
ments [3], [6], [7], [20]. Analyses of flow aggregated data often
fail to account for packet thinning [2], [8], [24].

The approach we develop here accounts for both packet
thinning and flow summarisation when modelling patterns of
traffic propagation within the likelihood framework.

B. The Bartlett—Lewis Traffic Model

Renewal processes form a natural context for traffic analysis
and have been used extensively [3], [6], [7], [20], [26]-[28].
However, [28] argues that simple renewal processes are limited
in their ability to jointly model within-flow burstiness and inter-
actions between flows. [6] address these limitations through the
use of branching renewal processes, namely, the Bartlett-Lewis
process.

The Bartlett-Lewis process is a sub-class of cluster renewal
processes generated by two concurrent processes. The main and
subsidiary processes respectively define the Poissonian arrival
of clusters and, conditionally on the arrival of each cluster, the
arrival of individual points within the cluster. The subsidiary
processes are finite unidirectional random walks whose origin is
the main arrival. Contextually, the first packet in each flow forms
the main process, whilst the subsequent packets form translated
simple finite renewal processes. Superimposing the main process
and all its subsidiary processes then yields the observed traffic.

Through this framework we can develop likelihoods for both
complete and flow aggregated data. Packet thinning in the con-
text of Bartlett—Lewis processes has not been explicitly studied,
but the general results of [20] can be applied quite naturally.

C. Symbolic Data Analysis

Symbolic data analysis is a relatively new field of statis-
tics which models distributions as its fundamental datum [29].
Observations in classical statistics are typically points in a
Euclidean space, having no internal variation. However, ag-
gregation of classical data into distributional symbols yields
objects with internal variation [30], [31]. The simplest symbol
is the extremal interval, obtained by mapping a set of random
variables X7i,..., X, to its extrema S = [min X;, max X;].
The remaining n — 2 points are then latently distributed within
the interval S [30].

The methods of SDA are designed to analyse distributional
forms such as random intervals and histograms [9], [30]-[34],
and weighted lists [29], [31]. SDA techniques can consequently
achieve computational and storage efficiency without sacrificing
statistical validity. Many common statistical procedures have
been extended to symbolic data including regression [31], [34]—
[36], likelihood-based inference [9], [32], [33], [37], principal
component analysis [38], [39], clustering [40], and time series
analysis [38]. SDA has been applied to a broad range of fields
including meteorology [37], finance [9], [37], medicine [9], [35],
agriculture [34], ecology [41], and climatology [33].

We follow the approach of [9] which constructs the marginal
likelihood for a symbol by accounting for the aggregation func-
tion applied to the underlying data and its generative model.
We can establish an equivalence between symbolic and network
traffic data by respectively treating packets and their NetFlows
as the underlying classical data and its aggregated summaries.

Proposition 2.1 ([9]): The (non-normalised) symbolic like-
lihood function is

Ls(s:0,9) = /X Fsix(s:2.9) gx(@:60) dz, (1)
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where fg x is the conditional density of S’ given the classical
data X, and gx is the joint density X.

The likelihood £ permits fitting of the underlying model g x
when only observing the aggregated summary S. This allows us
to fit models for packet-level data when observing only the flow
aggregates.

The symbolic likelihood reduces to the classical likelihood
as the granularity of the aggregation function becomes more
fine, and hence, can be seen as an approximation to the classical
likelihood, where the process of summarising may induce some
loss of information [9]. This property similarly holds in our
definition of the NetFlow (Definitions 3.2), which is in essence
an extremal interval on unidirectional data.

III. A NEW ESTIMATOR
A. The NetFlow Likelihood

Classical parametric likelihood-based for renewal processes
uses the set of inter-renewals as observed data for inference [42].
Inference on entire sessions can then be made by collating the
inter-renewals from all observed flows. However, this method is
not immediately applicable once the flows have been aggregated
as the individual inter-renewals are then lost. We address this
problem by first observing NetFlows as a particular type of
interval-valued random variable. We then adapt the likelihood
of the renewal process for NetFlows using the likelihood in (1).

We first define an appropriate mathematical analogue for the
NetFlow.

Definition 3.1: Consider a sequence of inter-renewals X =
(X;)M, of random length M embedded within the set of positive
finite sequences RY. The NetFlow summary S is the image of
the aggregation function

CP:R(_)‘_O*)RJ'_XRJ'_XN
M
= <X1aZXkaM>
k=2
= (Sy,5a, M)

=5

The random elements S, Sq, and M respectively define the
temporal distance between consecutive flows, the flow duration,
and flow size. To distinguish between the complete and packet
thinned settings, we denote the image of the function ¢ to be the
sampled NetFlow S when the argument Xisa sequence of inter-
renewals obtained from a thinned traffic, with 5 = (S 7, Sa, )
The mapping, however, remains identical in each scenario. The
elements of the sampled Netflows are naturally bounded by its
generating sequence so that Sy < Sy and M < M. The set of
NetFlows is then obtained by aggregating each flow.

We can now derive the NetFlow likelihood.

Proposition 3.2: Let X = (X;)M, and S = ¢(X) respec-
tively denote a sequence of inter-renewals and its associated Net-
Flow. Suppose that each inter-renewal X; has density g;(+; 6;),
forall2 = 1,..., M. Then the NetFlow likelihood is

Ls(S;0,v) = g1 (Sf;01)G (S4;0') pur (M;v),  (2)

where pj is the mass function for M,

G(50)=gox-xgu(6),

0= (0,)M,,0 = (0;,)M,,and f * g denotes the convolution of
the densities f and g.
Proof: See Appendix A. |

The NetFlow likelihood in (2) is a representative model for
typical flow aggregates. The distribution of each inter-renewal
is identical if the packet arrivals are defined by a simple re-
newal process. If, however, the packets arrive via a Bartlett—
Lewis process, so that X has Exponential density f(-;A) and
Xo, ..., Xy have some common density g(+; 6), then the Net-
Flow likelihood simplifies to

Ls(S;2,0;0) = f(Spx) g™V (S4;0) par (M),

where ¢*(M~1) is the (M —
01 =\
The NetFlow likelihood for an entire session is

Hf (Sg32)

x pu (Mi;v),

1)-fold self-convolution of ¢g and

*(Mifl)

Ls(S;n,0,v) (S4,:0)

since flows are independent, where S; denotes i-th Netflow and
S =(S1,...,5).

The NetFlow likelihood derived in Proposition 3.2 assumes
that there is no underlying thinning. The likelihood requires
some modification when traffic is thinned prior to aggregation.

Proposition 3.3: Let X = (X;)M, be a sequence of inter-
renewals and suppose that each arrival is retained with some
constant known probablllty q€ (0 1), yielding the sampled
inter-renewal sequence X = (X )M1 Let S = p(X
the sampled Netflow associated with X. Let

Py (Mm) = (Z) ¢ (1—g" ",
("272)
(7)

and G; 1 (57,54;0) = g1 * -+~ x g; <§f; (@‘)?:1)

) denote

P v, nr (s klm,m) =

~ k
X gj+1 % *x gk (Sd; (01)7(:]4»1) .

The sampled NetFlow likelihood is then

Lg (5; 0) = > pu (Miv) pygpy (Mlm)
m,j,k
X D g e aa s (s Klm, m)
% Gy (S7.54:6). 3)
where
m—M m
DD DS
myjk m>M J=1 k=j4+M-1
Proof: See Appendix B. ]
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The conditional mass function p NI|M provides the Binomial

probability of sampling M packets from the original flow of M
packets. The indices j and k respectively define the location of
the first and last sampled packets with respect to their position
in the original flow. The conditional mass function p ; K| M, T
provides the joint probability of observing a particular pair
of locations for the first and last sampled packets within the
original flow. The joint conditional density for the first sampled
inter-renewal S + and the sampled flow duration Sy is obtained
through the function G; .. We note that the densities of S and Sd
respectively require the computation of a j-fold and (k — j)-fold
convolution of densities.

The computational cost of evaluating (3) is primarily deter-
mined by the structure of the flow sizes M and the number of
packets which are sampled M — which is itself a function of
the sampling rate g. The likelihood in (3) can be computed
reasonably efficiently if pj, is known a priori and does not give
significant mass to large flow sizes. However, computational
overheads will be high if large latent flow sizes are considered,
and may otherwise require approximation.

As before, we can obtain the Bartlett-Lewis representation
of the sampled NetFlow likelihood by setting g; to be the
Exponential density and letting g5, = g for k& > 2, so that

Gjk (vaSd,/\ 9) =g #g" (Sf,x 0)

509 (3230).

A sessional sampled NetFlow likelihood requires an average of
n! combinations of (3) since the ordering of the original flows
cannot be determined from sampled arrivals without additional
marks. However, these additional marks can often be obtained
in practice through, for example, packet sequence numbers [7].
The sampled NetFlows can then be ordered according to these
additional marks, thereby defining the exact sequence of flows
and eliminating the need to take the aforementioned average of
n! combinations of flows. However, estimation in such circum-
stances is still somewhat complex. For example, suppose that
the network only contains two flows A and B — arriving in
that order — and that their respective non-empty sampled flows
are A and B. Flow-level parameters can be estimated using the
sampled NetFlow likelihood in (3) if A is observed before B.If,
however, B is observed before /1, then the effective first sampled
inter-renewal time for A is actually the sum of the distance
from B to the origin and A to B. We must hence establish
the probability that B is observed prior to A and account for
the latent convolution of packets in A when establishing the
likelihood for the sampled flow B. This sequential computation
naturally increases as the number of flows increases, and the
computation will be especially complex if the ordering of the
sampled flows does not match the actual ordering of flows.

In practice, we may only be concerned with estimating the
packet-level model, i.e. the temporal propagation of packets
within each flow. Itis then sufficient to only consider information
obtained from the sampled flow durations S,. We can then con-
struct a restricted sampled NetFlow likelihood which is capable
of evaluating the packet-level model without having to also

consider the original order in which the flows arrived. Suppose
that the generating renewal process is simple. Re-defining the
sampled Netflow to be S = (Sg, M), we can then write the
restricted NetFlow likelihood

Ls (S;e,u) = i~ mZI Py (M5 V) Py <M|m)
m=M k=M-1
X Prc|m, K (k\m,M) g*(k) (Sd;e) )
where

(ir)
(i)

is the conditional probability of k inter-renewals existing be-
tween the original location of the first and last sampled packets.
This implies that there were k — 1 packets in the original flow
between the first and last sampled packets, of which, m — 2 and
k — m — 3 were respectively sampled and not sampled. We note
that the quantity of available information is underutilised since
the element S + is not considered in our evaluation. However,
its omission may yield some benefit in reducing the required
summation and simplifying computations, especially when as-
sessing the packet-level model is of primary concern. Denoting
the i-th sampled NetFlow by S; and writing S = (S1,...,5,),
the restricted sessional sampled NetFlow likelihood becomes

£5(5:0) = f[ﬁg (S:0).

B. The NetFlow Estimators

Py, w1 <k|m,M) =(m—k)

Consider the log-likelihoods

0, (S;0) = %logﬁs(s;ﬂ)

and /,, (5;9) = llogllg (3’;0) . 4)

We define the NetFlow Maximum Likelihood Estimators
(MLES) to be the parameters s and 9 which maximise the
log-likelihoods in (4). More concretely, we write that

O := argsup 0y, (S;0)
0O

(S; 9) . (5)

IV. ATTRIBUTES OF THE ESTIMATOR

and és ‘= arg sup ln
0cO

Suppose that the packet-level inter-renewals are obtained
from the density function gx (-; 6). If X = (X)X, denotes the
concatenation of all packet-level inter-renewals from every flow
in the network, then the standard MLE 0 € O is the point which
maximises the log-likelihood > | log gx (X;; #). Consistency
and efficiency are useful properties of 6 [43]. We shall show that
the NetFlow estimators in (5) are also consistent, and that we
may specify its degree of efficiency relative to the standard MLE.

Although specific to renewal processes, our development of
consistency and relative information loss is novel since these
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properties of aggregated likelihoods are absent in existing SDA
literature, e.g. [9], [10], [32], [33], [41].

We restrict our analysis to the packet-level in order to avoid
the factorial growth in computation required to also consider
flow parameters. The following results assume that the packet
renewal model gx and its sequence of self-convolutions g}(k)
satisfy standard regularity conditions [43, p. 449]. They also
require that the series

£@:0) = preprgr (Klmai) g (;0) (6
k=1

is jointly uniformly convergent in R, x © when the possible
flow sizes are unbounded.

A. Consistency of the NetFlow Estimator

The following proposition extends the consistency of the
standard MLE to the NetFlow MLE. Hence, parameter estimation
using only aggregated NetFlows will still yield asymptotically
accurate results.

Proposition 4.1: The NetFlow MLEs g and g are consistent
for 6y € ©°, where @V is the interior of the parameter space ©.

Proof: See Appendix C. O

B. Efficiency of the NetFlow Estimator

The standard MLE is asymptotically Normally distributed with
variance (N H )~ ! under some weak regularity conditions, where
H and N are respectively the Fisher information of gx (-;6p)
and the number of observed inter-renewals in the session [44].
We can adapt this result for the NetFlow MLEs by considering
the Fisher information of the marginal densities of the flow
durations fg, and fgd. The NetFlow MLEs will converge to 6,
slower than the standard MLE since the estimator is computed
from aggregated and thinned data. However, we can identify the
number of NetFlows n which will yield a given degree of fidelity
of the NetFlow estimators compared to the standard MLE.

We shall simply consider the difference in the asymptotic
variances of the estimators, since they are each asymptotically
Normally distributed with common mean. The determinant of
the covariance matrices provides a comparable functional and
is identified with its general variance. If the standard MLE is
computed over k flows — so that N = kM,., where M, is the
mean number of packet-level inter-renewals per flow — then
the MLE has covariance matrix ¥ = (kM, H )71. Similarly, if
we denote the information matrix of the flow duration by [
and compute the NetFlow MLEs over n NetFlows, then we
can express the covariance matrix of the NetFlow estimator by
T =(nl)"".

Proposition 4.2: Let gx and fg, be the respective densities
for packet-level inter-renewals and flow durations, and let their
respective Fisher information be H and I. Let M, be the average
number of inter-renewals per flow computed from %k flows, so
that the number of packets per flow M = M, + 1. Suppose that
the standard MLE 6 is computed from N = kM, inter-renewals.
The number of NetFlows n which should be observed so that
the efficiency of the NetFlow MLE fg is within an ¢ relative

tolerance of the standard MLE 6, for some minimum probability
1 — n, satisfies the inequality

ng <n<n_,

where

=t (Y™ o (2 o (31 )

and d is the dimension of the parameter space © C R9.

Proof: See Appendix D. (]

Proposition 4.2 can be extended to thinned traffic by instead
computing the Fisher information matrix / with respect to the
density of sampled flow durations f5 . We typically only care
to satisfy n > n, since greater efficiency is generally desirable
and additional NetFlows can be obtained freely. In such cases
— where a one-sided bound suffices — the value of 7 in the
bounds for Proposition 4.2 can be replaced by 27. An explicit
implementation of Proposition 4.2 is provided in Example 2.

V. EXACT INFERENCE WITH THE NEF

The NetFlow likelihood requires a user specified model gx
for the inter-renewals. We wish to determine if there is a fam-
ily of models for which NetFlow aggregation does not forfeit
any inferential capacity. We show that the Natural Exponential
Family (NEF) satisfies this criterion.

Definition 5.1: The Natural Exponential Family is a sub-class
of the Exponential Family of distributions whose natural param-
eter and sufficient statistic are the identity. Respectively writing
h(x) and A(0) for the base measure and log-partition function,
its density can be written as

fx(z;0) = h(x)exp (0x — A(9)). @)
[45] show that the k-fold convolution of NEF has density
0 (w:0) = hi() exp (92 — k(D)) , ®

where h; is the base measure for the k-fold self-convolved
density f;((k). Convolutions of NEF random variables scale the
sufficient statistic identically to the NetFlow aggregation, yield-
ing the following lemma.

Lemma 5.2: Inference for the standard and NetFlow MLEs
is identical when the supplied model gx is of the Natural
Exponential Family.

Proof: See Appendix E. (]

Lemma 5.2 only holds for networks without packet thinning,
although we expect that the NEF also performs comparatively
better in practice than other models with thinned traffic.

This result provides a practical restriction on the optimality
of model fitting since, in most cases, the sufficient statistics
for distributions outside of the NEF are not derivable from the
standard NetFlow summary. For example, the sufficient statistic
for the shape parameter of the Gamma distribution is log x. The
exact sufficient statistics of convolved Gamma random variables
cannot be recovered from the flow duration S; = Zf\i;rl X;.
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VI. SIMULATIONS

We now explore the performance of the NetFlow MLEs on
various synthetic networks. [6] empirically show that packet
transit can be described by the Poisson—-Gamma class of the
Bartlett—Lewis process, so that the temporal distance between
consecutive flows and packets are respectively Exponentially
and Gamma distributed. [27] provide an algorithm to generate
this process. These models were also utilised by [26] and so
we adopt them here for our simulated analyses. The parameters
used to generate our simulated datasets are adopted from the
empirical analyses of [26]. We restrict our attention to assessing
packet level characteristics in order to avoid large computational
overheads.

Both generation and analysis of the synthetic data in the
following two examples are performed on the same machine.
The machine has four Intel Core™ i7-6700 cpus at 3.50 GHz
and 16 GB of RAM.

Example 1: In this example, we compare the performance
of the NetFlow MLE against the method-of-moments estimators
of [6]. Our results show that these moments-based estimators
fail to converge for the established network, unlike the NetFlow
MLE. We also provide a naive modification of the estimators
of [6] which ensures convergence.

We first describe the data generating process. The empirical
analysis of [26] assumes a Pareto distribution for the flow sizes
with minimum M = 1, yielding a flow size shape parameter of
k = 1.02. However, the Pareto distribution is, in fact, the contin-
uous analogue for the Zeta distribution, whose discrete support
reflects the underlying phenomena. We obtain the Zeta shape
parameter k£ = 2.012085 through reverse-engineering of the av-
erage flow size and optimisation of the Zeta mean, implying that
the flow sizes have finite mean but infinite variances. We assign
a finite Gamma renewal process for the packet-level process so
that the distance between consecutive within-flow packets are
Gamma distributed with parameters (o, 5o) = (0.6, 526.32).

The inter-renewals for each flow X are obtained by first sam-
pling the Zeta distributed random flow size and then generating
a sequence of independent Gamma distributed inter-renewals.
The NetFlow S = ¢(X) is then computed. Realised data for an
entire session is represented by {x1,...,x, } and {s1,...,8,}.
Though we do not assess the flow-level model, we otherwise
note that its standard and NetFlow MLE would coincide.

In [6] respectively define point estimators for «g and [y
through the empirical coefficient of variation and a weighted
average packet intensity. The shape estimator is explicitly de-
fined by & = (Z/6,)?, where T and &, are respectively the
empirical mean and standard deviation of all packet-level inter-
renewals. Denoting the ¢-th flow duration by sg4,, the rate
estimator is then defined as ﬁ =a). " we;, with weights
w; = m;/ Z;’:l m;, and packet intensities o; = m;/sq,. While
computationally fast, this approach is sequential, requires the
complete set of inter-renewals, and is specific to the Gamma
distribution.

We now supply equivalent moments-based estimators which
use only aggregated data. Let Y; be the mean inter-renewal
of the i-th flow. We define the estimator & = (3/6,)> 1/m,

TABLE I
EXAMPLE 1: MEAN POINT ESTIMATES (AND STANDARD ERRORS) OF (c, 3)
FROM T = 103 REPLICATE SYNTHETIC SESSIONS OF SIZE n

n
10° 102 10* 106
Method-of-moments
& 3.68 0.61 0.60 0.60
(1.09)  (~107%)  (~107") (~1077)
g ~10° ~10* ~10° ~107
(~10%) (~10%) (~10%) (~10°)
B* ~103 540.17 526.38 526.33
(~10%) (2.68) (0.18) 0.02)
NetFlow method-of-moments
a — 0.73 0.60 0.60
— (~107%)  (~107%)  (~1077)
B — ~10* ~10° ~107
—  (~10°) (~10%) (~10°)
B* — 64513 527.78 526.28
— (3.15) (0.33) (0.03)
NetFlow MLE
as  ~10% 0.65 0.60 0.60
(~10%)  (~107%)  (~107%)  (~1077)
Bs  ~10% 569.93 527.29 526.30
(~10%) (4.48) (0.34) (0.04)

True values are (cv, 80) = (0.6, 526.32).

where i and &, are respectively the sample mean and standard
deviation of the mean inter-renewal times, and (m —1)~1 =
n~ 13" 1/(m; — 1) is the mean of the reciprocal flow sizes
(minus 1). Substituting & for & into the previous rate estimator
yields 3 = & S, w;0;. We also compute naive estimators
B* = a/Tand §* = &)z, wherez = 31, y;/ S, m,. Note
that = Z.

Table I presents the average point estimates and standard
errors for each of the estimators for sessions of various size.
Note that & is not computable for sessions with only n = 1 flow
since the variance of a single value is zero.

The estimates for the shape parameter o converge well for all
methods. However, the moments-based rate estimators B and 3
notably fail to converge. This arises from estimating the rate
using the packet intensity o, which has Inverse-Gamma distri-
bution with infinite mean when its shape parameter o < 1. This
occurs when the flow size M + 1 < 2, which has approximate
probability 0.94 here. We can ensure that o’ > 1 by either setting
the inter-renewal shape parameter iy > 1 or by only recording
flow sizes for which Mag > 1. A discussion and examples of
these conditions are provided in the Supplementary Materials.

As expected, the moments-based estimators & and B *
computed over all the available data have considerably smaller
variance than the estimates which are computed from the flow
aggregates. However, we see that the NetFlow MLE is com-
parable to its moments-based counterparts when comparing
estimators which only use aggregated data.

Table II displays the average volume of information and eval-
uation time used to compute each point estimate, highlighting

Authorized licensed use limited to: University of New South Wales. Downloaded on August 04,2025 at 11:30:25 UTC from IEEE Xplore. Restrictions apply.



RAHMAN et al.: LIKELIHOOD-BASED INFERENCE FOR MODELLING PACKET TRANSIT FROM THINNED FLOW SUMMARIES 577

TABLE II
EXAMPLE 1: MEAN SESSION INFORMATION VOLUME (MEGABYTES) AND
COMPUTATION TIME (MILLISECONDS) OVER VARIOUS SESSION SIZES n.

n
10° 102 10* 10°
Method-of-moments
Size (MB)  ~107% ~1073 1.83 100.78
Time (ms) ~107' ~107* 3 230
NetFlow method-of-moments
Size (MB) — ~1078 0.09 9.31
Time (ms) — ~107% ~107F 12
NetFlow MLE
Size (MB)  ~107% ~1073 0.09 9.31
Time (ms) 1 1 53 5188

the trade-off between accuracy and computational speed. For
the moment-based estimators, those based on aggregated data
are typically at least one order of magnitude more efficient to
compute than those based on the full flow data. This highlights
the primary benefit of working with NetFlow session data. In
contrast, the NetFlow MLE may be more expensive to evaluate
since they may not be computed through simple arithmetic.

Example 2 (Gamma packet model with thinning): In the
previous example, we generated a network with complete
packet retention, which is rare in modern networks. The simple
moments-based estimators and their aggregated equivalents are
not coherent outside of this setting since they cannot be validly
computed from thinned traffic. However, the sampled NetFlow
MLE can be practically applied to both thinned and aggregated
network data. We explore its performance here under various
sampling rates.

As previously discussed, the computational cost of the sam-
pled NetFlow MLE is principally determined by the cardinality
of the flow sizes. Accordingly, we define a small sample space
of the flow sizes M = {10,102, 103}. Flow sizes are randomly
sampled from a truncated Zeta distribution with shape w =1
such that

%, pur (10%) = % and pyy (10%) = %
We again generate flows whose packet-level arrivals follow a
finite Gamma renewal process with parameters (0.6, 526.32).
Each packet arrival is independently recorded with probability
q- The sampled NetFlows s; are then computed from the thinned
traffic.

In addition to a range of sampling rates ¢, we also compute
the NetFlow MLE for various session sizes n, including nmin,
the lower bound in Proposition 4.2 with € = 7 = 0.1. In plain
language, 7y, is the minimum number of flows needed for the
NetFlow MLE to have efficiency within 10% of the standard MLE
in at least 90% of instances. Computing n i, analytically is quite
difficult since the information matrix I must be determined from
the sampled flow densities. However, through numerical differ-
entiation and Monte-Carlo integration, we respectively estimate
that npi, = 81, 106, 551, 5065, and 6507 for the sampling
rates ¢ = 107% fork =0,...,4.

pa(10) =

We also compute the standard MLE for a single flow with all
of its inter-renewals. Table III presents the average (sampled)
NetFlow MLE and standard errors for various session sizes and
sampling rates. The rightmost column indicates the average
number of seconds needed to compute the NetFlow MLE from
Nmin NetFlows.

The results show that the NetFlow MLE converges to the
true parameter, regardless of the level of thinning. The results
intuitively show that more NetFlows are required to achieve
desired efficiency as the degree of packet thinning increases.
This is also apparent in the increasing sequence of 1y, Which
aims to provide a constant degree of efficiency for each sampling
rate. The average time to compute the NetFlow MLE naturally
increases with npyi,, but is notably sub-linear, though does not
achieve log-growth in this example. We see that point estima-
tion is relatively time effective, requiring on average less than
two minutes for a heavily thinned network with sampling rate
qg=10"%

VII. REAL DATA ANALYSIS

We now explore the performance of the NetFlow MLE on real
network data. We obtain a pcap file from [46] which captures
one minute of network activity, observing 36 197 062 packets
distributed amongst 1 811 255 flows, of which, we identify
779 788 non-trivial flows.

Timestamps are recorded at nanosecond granularity. In some
cases, inter-renewals will be recorded as O since consecutive
packets may arrive within this threshold. We assign these zero-
valued inter-renewal times to be 10~7 seconds, on the scale of the
smallest positive inter-renewal time & ~ 2.38 x 10~" seconds.

The pcap trace was processed using a high performance
cluster to extract the arrival times, source and destination ad-
dresses, and IP tag. Each job utilised 20 GB of RAM on four
cores. The flows were then constructed from the aforementioned
information using 10 parallel jobs, each of which utilised four
cores with 8 GB of RAM each. The generation of NetFlows and
parameter estimation was performed on a local machine with
four Intel Core™ i7-6700 cpuUs at 3.50 GHz and 16 GB of
RAM.

A. Full Packet Retention

We first provide an analysis assuming complete data. The
standard MLE requires approximately 2 hours to compute using
the Gamma model and its fitted survival function is presented
in Fig. 1(a). It is clear from Fig. 1 that the Gamma model is
misspecified. We instead naively compute the sample mean and
standard deviation of the log-transformed inter-renewals

(log(x), &log(w)) — (—8.0087, 4.5046) , ©)

where = denotes the packet inter-renewals. These quantities
correspond to the MLE for the Log-Normal distribution. Fig. 1(a)
shows that the Log-Normal model with parameters (9) provides
a sufficiently good fit for the packet inter-renewals.
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TABLE III

n
10° 10 102 103 Nmin  Time (s)
MLE (¢ =1)
a 0.72 — — — — —
(0.01) — — — — —
B 703.74 — — — — _
(14.69) — — — — —
NetFlow MLE
q=1
dg  ~10% 0.84 0.62 0.60 0.63 1073
(~102%) 0.02) (~1073) (~107%) (~1073)
Bs  ~10% 73737 54433 52888  551.38
(~10%)  (14.72) (2.45) (0.76) (3.07)
g=10"1
as  ~10% 29.22 0.64 0.60 0.63 5
(~10%)  (12.13)  (~107%)  (~1077) (~107%)
Bg  ~1033 ~104 561.20 529.01 553.17
(~10%%)  (~10%) (3.89) (1.09) (3.89)
g=10"2
ag  ~10% ~103 5.49 0.63 0.66 20
(~10%7)  (175.05) (0.88) (~107%) (~107%)
Bg  ~1032 ~10° ~10? 552.61 575.42
(~10%2)  (~10°%)  (765.00) (3.68) (6.24)
g=10"3
as  ~10% ~10%  188.22 2.59 0.66 97
(~10%) (143.03)  (10.73) (023)  (~1073%)
Bs  ~1031 ~10° ~10° ~10? 578.06
(~10%0)  (~10°%)  (~10%)  (195.88) (5.97)
g=10"*
as  ~10% ~10°  160.17 2.77 0.65 115
(~10%)  (120.78) (8.97) (0.26) (~1073%)
Bs  ~1031 ~10° ~10° ~103 573.49
(~10%0)  (~10%)  (~10%)  (224.11) (5.33)

Estimates are obtained over a range of session sizes n and packet thinning rates q. presented values are obtained
from 7" = 102 replicate datasets with non-trivial flows. true values are («o, B9) = (0.6, 526.32). The right-most
column shows the average time (seconds) to compute the (sampled) netflow MLE using nmin = 81, 106, 551, 5065,
and 6 507 netflows for respective sampling rates g as Shown.

The NetFlow MLE for the Log-Normal model is not immedi-
ately accessible since there are no simple, closed-form convolu-
tions of Log-Normal random variables. We instead estimate the
convolution through the Fenton—Wilkinson approximation [47].
Unfortunately, this approximation cannot be readily substituted
into the NetFlow likelihood since the session contains several
mouse flows whose durations are too small to satisfy the tail
approximation. We remedy this by further aggregating the set of

NetFlows into a single session NetFlow, obtained by taking the
element-wise sum of all NetFlows. This two-step approximation
yields the NetFlow MLE (fis,ds) = (—7.9511, 3.6684).

Fig. 1(a) shows that the NetFlow MLE slightly underestimates
large scale inter-renewals, but is an otherwise satisfactory repre-
sentation of the observed data. Table IV (top two rows) presents
the size of each dataset and times for computing the standard
and NetFlow MLE. In this instance, computation for the MLE is
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(b) ¢ = 0.001

Survival functions for the observed inter-renewals and various fitted models. Fig. 1(a) supplies the survival function under complete packet retention,

i.e. ¢ = 1. Fig. 1(b) depicts the fitted models when each packet in the network is retained through a Bernoulli trial with probability ¢ = 0.001. The thick black line
indicates the survival function of the observed data and is identical in both (a) and (b). The dotted line in (a) is obtained by fitting the MLE for a Gamma model to
the complete set of inter-renewals. All other supplied survival functions are fitted to the Log-Normal distribution. The solid grey line in (b) indicates the standard
MLE which is naively applied to the sampled inter-renewals. The dotted and dashed lines in (b) correspond to the fitted models from the sampled NetFlow MLE

obtained from the experiment for the given number of datapoints 7.

TABLE IV
MEAN POINT ESTIMATES (AND STANDARD ERRORS) FOR THE REAL DATA
APPLICATION IN SECTION VII

Data volume Data Parameters ~ Times (s)
P n u o
g=1
NetFlow MLE 1 779788  -8.05 3.70 6
Standard MLE 1 34385807 -8.10 4.50 3
q = 0.001
NetFlow MLE ~ 0.001 5  -741 2.24 410
(0.64) 0.41)
0.01 46  -7.84 2.73 714
(0.46) (0.29)
0.1 456 -8.90 3.20 2718
(0.03) (0.07)
1 4553 -8.79 2.92 13938
Naive MLE 1 19511 0.22 242 0

The quantity p determines the proportion of total available information used to
compute the point estimate. The number n denotes the number of datapoints which
correspond to p and respectively refers to the number of inter-renewals and netflows
over which the standard and netflow MLE are computed. The right-most column
presents the average time (in seconds) required to compute the point estimate.
Estimates with p < 1 are averaged over 7" = 10 resamples of the data set.

trivially faster since the point estimates can be expressed through
simple arithmetic. However, we note that the file size of the
complete set of inter-renewals required to compute the standard
MLE is 26.1 times larger than the set of NetFlows, and that this
larger dataset is typically not recorded in practice.

B. A Packet Thinned Scenario

We consider a more realistic setting by analysing packet-
thinned samples of the full dataset, with sampling probability
q = 1073. The sampled NetFlows are then computed using
Definition 3.1. We observe 36 189 sampled arrivals which are
distributed amongst 4 553 sampled flows.

We obtain an initial point estimate by computing the sample
mean and standard deviation of the sampled inter-renewals,
which we term to be the naive MLE. In order to compute the
sampled NetFlow MLE, we need to supply the mass function for
the original flow size p;. We compute an empirically derived
truncation of the mass function to limit computational overload.
We assume that the original flow sizes are restricted to M =
[j x 10*],where j = 1,2.5,5,and k = 0, ..., 5, rounding each
observed flow size to the nearest restricted flow size, and then
deriving the approximate mass function from the proportion
of flows rounded to each restricted flow size value. We then
compute the sampled NetFlow MLE using the estimated flow
size mass function and the Fenton—Wilkinson approximation for
the convolution of the density of the Log-Normal distribution.
However, in contrast to the scenario with full packet retention,
the sampled NetFlows were not aggregated into a larger sessional
sampled NetFlow. Hence, the Fenton—Wilkinson approximation
is poor for sampled NetFlows with smaller sampled flow du-
rations and sampled flow sizes. The under-estimation arising
from the second degree approximation is apparent in Fig. 1(b)
and the value of the point estimates presented in Table IV.
This contrasts the accurate convergence of the NetFlow MLE
presented in Example 2 which utilised an exact convolution for
the Gamma model.

The results are presented in the middle rows of Table IV and
in Fig. 1(b). The quantity p indicates the proportion of the total
available data used to compute the point estimate. The quantity
n corresponds to p and shows the resulting number of datapoints
used in the optimisation.

From Fig. 1(b) it is clear that naively fitting the Log-
Normal distribution to the sampled inter-renewals (solid-grey
line) fails to adequately describe packet transit. The sampled
NetFlow MLE performs well, even with the approximations
involved in computing convolutions and the mass of flow sizes.
The model fit is naturally poorer than when using the full
dataset, although the full dataset is typically unavailable. More
accurate fits can be obtained by using finer approximations
of pars.
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VIII. DiSCUSSION

We have introduced a novel method for parametric,
likelihood-based inference of network packet data when the
utilised data are (possibly) thinned and aggregated. The abil-
ity to jointly handle packet thinning and NetFlow aggregation
within the likelihood framework, and all its inferential benefits,
is a great advantage over existing methods for analysing flow
data, which can only account for one of these processes. The
maximum likelihood estimators themselves are consistent (with
increasing numbers of NetFlows), and we have derived bounds
on the number of (thinned) NetFlows needed to attain a given
degree of accuracy. As a result, the NetFlow likelihoods offer
a practical and flexible tool for inference on very large session
datasets.

The potentially large computational cost is the price to pay
for this framework. Indeed, computing the NetFlow likelihoods
requires a convolution of densities which can be particularly
complex when the model is not closed under convolutions.
However, we have shown that, even on real data, closed-form
approximations can be utilised without severe consequences.
Optimising a likelihood is slower than methods that rely on
simple arithmetic computation (such as the moments-based esti-
mators of [6] and [26]). Computation also increases with higher
degrees of packet thinning (i.e. low ¢), or with a high frequency
of elephant flows, since the NetFlow likelihood function needs
to consider (and integrate out) all possible latent flows which
could have produced the observed, thinned flow.

Despite these limitations, the NetFlow likelihood estimators
provide an effective method for network analysis when the data
we have to work with is less than ideal: both heavily summarised,
and heavily sub-sampled.

APPENDIX
A. Proof'to Proposition 3.2

Proof: The joint conditional density of the first inter-renewal
Sy and flow duration Sy is

fs;.50%x 0 (8§, 8d|T,m) =

55f (xl)ésd (Z ZUk) )
k=2

where §, is the Dirac measure centred at a. The sequence of
inter-renewals X has conditional density

ng :Eu z

Substituting (10) and (11) into (1) and computing the integral
over the space R yields the conditional likelihood

(10)

an

9x|M (z|m; 0)

L, sanr (55,5am;0) = g1 (s5;01) G (sa;0).  (12)

Multiplying (12) by the mass function pj(m; ) then yields the
result. 0

B. Proof to Proposition 3.3

Proof: The conditional density for the first sampled-inter-
renewal S; and sampled flow duration Sy is

fs, 0% 51,00 (3¢, 8al®,m) = b5; (21) 05, <Z$z> - (13)

In a manner similar to Appendix A, we now wish to define
the conditional density of the vector of sampled inter-renewals
f X|N- There are (’:;L) possible ways to construct a vector of
sampled inter-renewals of length m from the original vector of
inter-renewals x of length m, each of which are equally likely
to be obtained. Hence, we have that

~1

- - m
Ix1x 0,01 (@, m, ) = <m> . (14)
Noting that the sequence of inter-renewals X is independent of
the number of sampled packets M, we have that the conditional
density fX\M v = 9x|um as defined in (11). Substituting (11)
and (14) into (1) and computing the integral over the space

{nenins (7)) xmy

with respect to the product of the counting and m-dimensional
Lebesgue measure yields the conditional likelihood

Ls, s.a,11 (35, 84lm,m;0) =

I, (Z x) dz. (15

Suppose that the first sampled packet corresponds with the J-th
packet in the original sequence, and that the last sampled packet
— the m—th sampled packet — corresponds with the K-th
packetin the original sequence, wherem > 2and1 < J < K <
m. It follows that 57 = 527 2, and 54 = ZfiJH x;. The
quantities J and K are, in fact, random variables. Write R"" =
RJ x RE™7 x R Conditioning the likelihood in (15) with
respect to J and K and computing the integral then yields

/ 9x|\Mm (x|m; 0) i,
R

+

£§f7§d‘M,]\~J7J7K (§f7 gd‘m,’fh’j, k7 0) =

Gik(5:0). (16)
Conditional on M and M , J takes values in the set
Qr={jeN:j<M-M+1}
and has mass function
()
Pyar,ar(dlm, m) = 17)

()

since there are (7~ g 7) equally possible sampled flows which can
be obtained when the first sampled packet corresponds to the
j-th packet in the original flow. Similarly, conditional on M,
M ,and J, K takes values in the set

Qg ={keN:J+M—-1<k< M}
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and has mass function

(als)
pK|J,M,M (k‘|],m,7h) = (Z:])
m—1

(18)

since there are (kglj_ ;l) uniformly possible which can be ob-

tained when the first and last sampled packets respectively
correspond to the j-th and k-th packets in the original flow.
Integrating the product of (16), (17), and (18) over the space
Q5 x Qg with respect to the product counting measure yields
that

Ls, .11 (55, 8alm,m;0) =
i (75

m—m-+1

Taking the product of (19), pys, and p NI M and integrating over
the space

Gk (57,5a4;0). 19)

(meN:m>m) (20)

with respect to the counting measure then yields the result. [J

C. Proof'to Proposition 4.1

Proof: We first show that fs is consistent. We then define
conditions which give consistency for ég when applying an
identical approach. Firstly, we assume that O is locally compact
and we denote a general compact neighbourhood by ©. Let
A(s;0) :=Eg,[t1(s;0)].

Lemma 8.1: The sequence {{,(s;0)},>1 converges to
A(s; 0) pointwise by the law of large numbers.

Lemma 8.2: Suppose that ¢gx is identifiable in O,
ie.gx(-,01) = gx(-,02) = 01 = 0. Then A(s, 0) is uniquely
maximised at 0.

Proof: An application of Jensen’s inequality yields that

Eg, [gﬁm) (; 90)} > Eg, [g}(m) (; 9)}

for all 6 # 0y. Hence, A(s; 6) is maximised at 6. This point is
also unique as a consequence of identifiability. O

Definition 8.3 (Stochastic equicontinuity [48]): A sequence
of real-valued random functions { f,, (z; 0) },,>1 is stochastically
equicontinuous in 6 if, for all positive € and 7, there exists a
positive ¢ such that

limsup P (sup

n—0o0

sup | fn(2;9) — fu(2:0)] > 6) <.

9€0 [0-0]<s

Lemma 8.4: The sequences {£,,(s;0)}>2_,
are stochastically equicontinuous.

Proof: The sequence {A(s; #)},>1 is stochastically equicon-
tinuous since A(s; 0) is constant in n and uniformly continuous
in ©.

We now prove that the sequence {/,,(s;6)},>1 is stochasti-
cally equicontinuous. Firstly, let

Y(si30,0) = log (9*(m7')(3di§19)) — log (g*“’“)(sdi; 9))-

and {A(s;0)}22,

For some positive € and d, we have that

|00 (8;09) — £,,(8;0)| > 6)

limsupP | sup sup
n—00 9e@ 0€B(Y,6)

< 1IEE lsup sup 21

€ |9e@0eB(,5)

where

j = argmaxE lsup sup  |y(si; 9, 0)|] .

i=l,..n  |9c@ 0B(¥,5)
For some positive 7, we can choose &' = d(e,n) such that
Supjg_yg|<s [7(5530,9)| < ne. 1t follows that {£,,(s;0)},>1 is
stochastically equicontinuous since (21) can be bounded from
above by 7. |

An application of Theorem 2.1 of [48] shows that /,, converges
to A uniformly in probability, and hence 6 is consistent.

The proof for the sampled NetFlow estimator 0 5 is identical
if the cardinality of the flow sizes is bounded. However, we
require that the series (6) is jointly uniformly convergent when
the cardinality is countably infinite. We can then pursue the same
method of proof with the stated condition. ]

D. Proof to Proposition 4.2

Proof: Every covariance matrix induces a hyper-ellipsoid
whose semi-axes lengths are equal to its eigenvalues [49]. The
volume of the induced hyper-ellipsoid is hence proportional to
the square root of the determinant of the generating covariance
matrix. Hyper-ellipsoids with smaller volumes then imply that
the generating random vector has smaller variance. Hence, we
may geometrically compare the efficiency of the NetFlow and
standard estimators by observing the volume of their associated
hyper-ellipsoids. For a d-dimensional parameter space © C R9,
we have that

3| = ‘(kM,,.H)*l‘ = (kL) " | H|
and |Y| = |(nI) | =n 17t

We wish to determine the number of NetFlows n which we
should observe so that for some positive € we have that

‘T|1/2
|E|1/2

-1

= <, (22)

Vol és 1
Vol

where Vol X denotes the volume of the hyper-ellipsoid induced
by the random vector X . The ratio of the volumes of the induced
hyper-ellipsoids hence satisfies the bounds

|T|1/2

<|Z|71/2<1+€.

1—c¢
We however note that (22) desgribes a random event with
respect to the random variable M,.. We can instead consider
bounding (22) in probability such that for any positive ¢ and 7,
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we have that

21_77;

or equivalently,

T2
—1| >
P<‘|Zl/2 1‘ 5) <. (23)
This ensures that the efficiency of the NetFlow and standard
MLEs are within an ¢ tolerance of each other for a minimum
specified long run average 1 — 7.
To obtain the given bounds, consider the equation

\T|1/2
|E|1/2

—1’ > ¢ (24)

and let r = n/k and R = |I|/|H|. Then, squaring both sides
of (24), substituting for 3, Y, r, and R, and rearranging yields
the equation

rARTINE — 2 PRTVIN[Z 41 —2 > 0. (25)

Equation (25) is a positive quadratic with respect to Mf /% and
has roots

re =r¥2RY2(1 L e).
As a set, (24) can be rewritten as the union of disjoint sets
{Mr > :ci/d} U {MT < xQ_/d} :
so that (23) can be replaced by
P (MT in/d) +P (MT gﬁ/d) <.

Applying Chernoff’s bound to the first summand, bounding the
limit by 7)/2, and rearranging for r yields

> () (50)

Substituting for  and R and rearranging for n then yields the
lower bound

n >k (M)l/d log (f}[@ [GMD —in,.

Performing a similar set of operations to the latter summand
yields the upper bound

n< —k (M)I/d log (7271@ [eM,,,D o

Note that the two-sided interval is only satisfied if

E [eM’"] E [e—m] s (Dg/lte
2V1—e¢

O

E. Proof to Proposition 5.2

Proof: Recalling the densities in (7) and (8), for a sequence
of inter-renewals & and its associated NetFlow s = (s, sq,m +
1), we have the likelihoods

m—+1
L(x;0) xexp | 6 Z x; — (m+1)A(#) | and

i=1
Ls(s;0) ocexp (0 (sy + sq) — (m+1)A(H)),

which are identical since ka:+11 T = S5+ 8q. O

ACKNOWLEDGMENT

This research includes computations using the computational
cluster Katana supported by Research Technology Services at
UNSW Sydney.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022,”
San Jose, California, USA, White Paper, Feb. 2019.

[2] R. Hofstede et al., “Flow monitoring explained: From packet capture to
data analysis with netflow and IPFIX,” IEEE Surv. Tut., vol. 16, no. 4,
pp. 20372064, 2014.

[3] N. Hohn and D. Veitch, “Inverting sampled traffic,” IEEE/ACM Trans.
Netw., vol. 14, no. 1, pp. 68-80, Feb. 2006.

[4] R.Jurgaand M. Hulbéj, “Packet sampling for network modelling,” CERN,
Geneva, Switzerland, Tech. Rep., CH-1211, Dec. 2007.

[5] L.Bin,L.Chuang, Q.Jian, H. Jianping, and P. Ungsunan, “A netflow based
flow analysis and monitoring system in enterprise networks,” Comput.
Netw., vol. 52, no. 5, pp. 1074-1092, 2008.

[6] N. Hohn, D. Veitch, and P. Arby, “Cluster processes: A natural lan-
guage for network traffic,” IEEE Trans. Signal Process., vol. 51, no. 8,
pp. 2229-2244, Aug. 2003.

[7]1 N.Antunes and V. Pipiras, “Estimation of flow distributions from sampled

traffic,” ACM Trans. Modelling Perform. Eval. Comput. Syst., vol. 1,no. 3,

pp. 1-28, 2016.

V. Carela-Espaiiol, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta,

“Analysis of the impact of sampling on netflow traffic classification,”

Comput. Netw., vol. 55, no. 5, pp. 1083-1099, 2011.

[9] B. Beranger, H. Lin, and S. Sisson, “New Models for Symbolic Data
Analysis,” 2018, arXiv:1809.03659.

[10] X.Zhang, B. Beranger, and S. Sisson, “Constructing likelihood functions
for interval-valued random variables,” Scand. J. Statist., vol. 47, no. 1,
pp. 1-35, 2020.

[11] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” IEEE/ACM Trans. Netw., vol. 13, no. 5,
pp. 933-946, Oct. 2005.

[12] D. Veitch and P. Tune, “Optimal skampling for the flow size distribution,”
IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3075-3099, Jun. 2015.

[13] L. Yang and G. Michailidis, “Sampled based estimation of network traffic

flow characteristics,” in Proc. IEEE INFOCOM 2007-26th IEEE Int. Conf.

Comput. Commun., 2007, pp. 1775-1783.

Y. Chabchoub, C. Fricker, F. Guillemin, and P. Robert, “On the statistical

characterisation of flows in internet traffic with application to sampling,”

Comput. Commun., vol. 33, no. 1, pp. 103-112, Jan. 2010.

[15] B. Ribeiro, D. Towsley, T. Ye, and J. Bolot, “Fisher information of
sampled packets: An application to flow size estimation,” in Proc. 6th
ACM SIGCOMM Conf., Internet Meas., 2006, pp. 15-26.

[16] N.Brownlee and K. Clafty, “Understanding internet traffic streams: Drag-

onflies and tortoises,” IEEE Commun. Mag., vol. 40, no. 10, pp. 110-117,

Oct. 2002.

S. S. Kundu, K. Pal Basu, and S. Das, “Fast classification and estimation

of internet traffic flows,” in Passive and Active Network Measurement

(Lecture Notes in Computer Science Series), S. K. Uhlig Papagiannaki

and O. Bonaventure, Eds., vol. 4427. Berlin, Germany: Springer, 2007,

pp. 155-164.

Y. Miao, Z. Ruan, L. Pan, J. Zhang, Y. Xiang, and Y. Wang, “Comprehen-

sive analysis of network traffic data,” in Proc. IEEE Int. Conf. Comput.

Inf. Technol., 2016, pp. 423-430.

[8

—_

[14]

[17]

[18]

Authorized licensed use limited to: University of New South Wales. Downloaded on August 04,2025 at 11:30:25 UTC from IEEE Xplore. Restrictions apply.



RAHMAN et al.: LIKELIHOOD-BASED INFERENCE FOR MODELLING PACKET TRANSIT FROM THINNED FLOW SUMMARIES

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

(31]

(32]

[33]

S. Stoev, M. Taqqu, C. Park, and J. S. Marron, “On the wavelet spectrum
diagnostic for hurst parameter estimation in the analysis of internet traffic,”
Comput. Netw., vol. 48, no. 3, pp. 423445, 2005.

N. Antunes and V. Pipiras, “Probabilistic sampling of finite renewal
processes,” Bernoulli, vol. 17, no. 4, pp. 1285-1326, 2011.

J. Kim, A. Sim, B. Tierney, S. Suh, and I. Kim, “Multivariate network
traffic analysis using clustered patterns,” Computing, vol. 101, no. 4,
pp. 339-361, Apr. 2019.

C. You and K. Chandra, “Time series models for internet data traffic,” in
Proc. 24th Conf. Local Comput. Netw. Lowell, MA, USA, 1999, pp. 164—
171.

A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N.
Taft, “Structural analysis of network traffic flows,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 32, no. 1, pp. 61-72, Mar. 2004.

A. Proto, L. Alexandre, M. Batista, I. Oliveira, and A. Cansian, “Statistical
model applied to netflow for network intrusion,” in Transactions on
Computational Science XI: Special Issue on Security in Computing, M.
L. Gavrilova, C. J.K. Tan, and E. D. Moreno, Eds., Berlin Heidelberg,
Germany: Springer-Verlag, 2010, vol. 2, pp. 179-191.

Y. Lee, W. Kang, and H. Son, “An internet traffic analysis method with
mapreduce,” in Proc. IEEE/IFIP Netw. operations Manage. Symp. Work-
shops, 2010, pp. 357-361.

N. Antunes, V. Pipiras, P. Abry, and D. Veitch, “Small and large scale
behavior of moments of poisson cluster processes,” ESAIM: Probability
Statist., vol. 21, pp. 369-393, 2017.

B. Gonzdlez-Arévalo and J. Roy, “Simulating a poisson cluster process
for internet traffic packet arrivals,” Comput. Commun., vol. 33, no. 5,
pp. 612-618, Mar. 2010.

C. Williamson, “Internet traffic measurement,” IEEE Internet Comput.,
vol. 5, no. 6, pp. 70-74, Nov./Dec. 2001.

L. Billard and E. Diday, “Symbolic data analysis: Definitions and exam-
ples,” Univ. Georgia, Athens, USA, White Paper, 2004.

L. Billard and E. Diday, “From the statistics of data to the statistics of
knowledge: Symbolic data analysis,” J. Amer. Stat. Assoc., vol. 98, no. 462,
pp. 470-487, 2003.

L. Billard and E. Diday, Symbolic Data Analysis: Conceptual Statistics
and Data Mining. Southern Gate, Chichester, West Sussex, U.K.: Wiley,
2007.

J. Le-Rademacher and L. Billard, “Likelihood functions and some max-
imum likelihood estimators for symbolic data,” J. Stat. Plan. Inference,
vol. 141, no. 4, pp. 1593-1602, Apr. 2011.

T. Whitaker, B. Beranger, and S. Sisson, “Composite likelihood meth-
ods for histogram-valued random variables,” Statist. Comput., vol. 30,
pp. 1459-1477, 2020.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

583

T. Whitaker, B. Beranger, and S. Sisson, “Logistic regression mod-
els for aggregated data,” J. Comput. Graphical Statist., vol. 30, no. 4,
pp. 1049-1067, 2021, doi: 10.1080/10618600.2021.1895816.

L. Billard and E. Diday, “Symbolic regression analysis,” in Classification,
Clustering, and Data Analysis, K. Jajuga, A. Sokok owski, and H.-H.
Bock, Eds., Berlin, Heidelberg: Springer, Jul. 2002, pp. 281-288.

E. Neto and F. de Carvalho, “Centre and range method for fitting a linear
regression model to symbolic interval data,” Comput. Statist. Data Anal.,
vol. 52, no. 3, pp. 15001515, Jan. 2008.

P. Brito and A. Silva, “Modelling interval data with normal and skew-
normal distributions,” J. Appl. Statist., vol. 39, no. 1, pp. 3-20, Jan. 2012.
M. Noirhomme-Fraiture and P. Brito, “Far beyond the classical data
models: Symbolic data analysis,” Stat. Anal. Data Mining, vol. 4, no. 2,
pp. 157-170, Mar. 2011.

V. Lauro and F. Palumbo, “Principal component analysis of interval data:
A symbolic data analysis approach,” Comput. Statist., vol. 15, no. 1,
pp. 73-87, Sep. 2000.

R. Verde, “Clustering methods in symbolic data analysis,” in Classifica-
tion, Clustering, and Data Mining Applications, D. F. R. Banks McMorris,
P. Arabie, and W. Gaul, Eds., Chicago, USA: Springer, Jul. 2004, pp. 299—
317.

H. Lin, M. Caley, and S. Sisson, “Estimating global species richness using
symbolic data meta-analysis,” Ecography, vol. 2022, no. 3 Mar. 2022,
Art. no. e05617.

A. Karr, Point Processes and Their Statistical Inference, 2nd ed. New York,
NY, USA: Marcel Dekker Inc.4, 1991.

E. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed. New
York, NY, USA: Springer-Verlag, 1998.

R. Hopfner, Asymptotic Statistics : With a View to Stochastic Processes,
Ist ed. Berlin, Germany: Walter de Gruyter GmbH & Co KG, 2014.

C. Morris and K. Lock, “Unifying the named natural exponential fami-
lies and their relatives,” Amer. Statistician, vol. 63, no. 3, pp. 247-253,
Aug. 2009.

CAIDA, “The CAIDA UCSD anonymized internet traces <20190117-
1315500>,” 2019. Accessed: Apr. 22, 2020. [Online]. Available: http:
/Iwww.caida.org/data/passive/passive_dataset.xml

N. Marlow, “A normal limit theorem for power sums of independent
random variables,” Bell Syst. Tech. J., vol. 46, no. 9, pp. 2081-2089,
Nov. 1967.

W. Newey, “Uniform convergence in probability and stochastic equicon-
tinuity,” Econometrica, vol. 59, no. 4, pp. 1161-1167, 1991.

Y. Tong, The Multivariate Normal Distribution (Ser. Springer Series in
Statistics Series), Ist ed. New York, NY, USA: Springer-Verlag, 1990.

Authorized licensed use limited to: University of New South Wales. Downloaded on August 04,2025 at 11:30:25 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1080/10618600.2021.1895816
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


