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Abstract
Introduction: Sampling and describing the distribution of refractive error in pop-
ulations is critical to understanding eye care needs, refractive differences between 
groups and factors affecting refractive development. We investigated the ability of 
mixture models to describe refractive error distributions.
Methods: We used key informants to identify raw refractive error datasets and a 
systematic search strategy to identify published binned datasets of community-
representative refractive error. Mixture models combine various component dis-
tributions via weighting to describe an observed distribution. We modelled raw 
refractive error data with a single-Gaussian (normal) distribution, mixtures of two 
to six Gaussian distributions and an additive model of an exponential and Gaussian 
(ex-Gaussian) distribution. We tested the relative fitting accuracy of each method 
via Bayesian Information Criterion (BIC) and then compared the ability of selected 
models to predict the observed prevalence of refractive error across a range of cut-
points for both the raw and binned refractive data.
Results: We obtained large raw refractive error datasets from the United States 
and Korea. The ability of our models to fit the data improved significantly from a 
single-Gaussian to a two-Gaussian-component additive model and then remained 
stable with ≥3-Gaussian-component mixture models. Means and standard devia-
tions for BIC relative to 1 for the single-Gaussian model, where lower is better, were 
0.89 ± 0.05, 0.88 ± 0.06, 0.89 ± 0.06, 0.89 ± 0.06 and 0.90 ± 0.06 for two-, three-, four-, 
five- and six-Gaussian-component models, respectively, tested across US and 
Korean raw data grouped by age decade. Means and standard deviations for the 
difference between observed and model-based estimates of refractive error prev-
alence across a range of cut-points for the raw data were −3.0% ± 6.3, 0.5% ± 1.9, 
0.6% ± 1.5 and −1.8% ± 4.0 for one-, two- and three-Gaussian-component and ex-
Gaussian models, respectively.
Conclusions: Mixture models appear able to describe the population distribu-
tion of refractive error accurately, offering significant advantages over com-
monly quoted simple summary statistics such as mean, standard deviation and 
prevalence.
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INTRO DUC TIO N

Understanding the distribution of refractive error within a 
population promotes optimal eye care planning and deliv-
ery. Description of the refractive error distribution within 
population sub-groups additionally enables explorations 
of the refractive development effects of inherent variables 
such as age or sex, exposures such as screen time or sleep 
patterns and interventions such as mandated time spent 
outdoors or topical low-dose atropine. Description of the 
entire refractive error spectrum in a defined population 
can improve our understanding of the recent and dramatic 
increases in myopia prevalence seen in some communities1 
and enable work towards the World Health Organization's 
recommendation for integrated people-centred eye care.2

While the population distribution of neonatal refractive 
error is essentially normal,3 it is widely accepted that the 
distribution of refractive error develops a marked kurtosis 
giving an excess of emmetropia and skewness toward myo-
pia.4,5 The emergence of both kurtosis and skewness in de-
velopment can be explained by emmetropisation, in which 
ocular component growth is modulated by visual experi-
ence.4,5 The non-normality raises a question regarding the 
best way to describe the distribution. It has been standard 
to simply report refractive error prevalence at specific cut-
points – for example, prevalence of myopia ≤ −0.50 D was 
25%. Summary statistics are also common – for example, 
the mean spherical equivalent refraction (SER) was +0.12 D 
with a standard deviation of 1.93. Neither of these standard 
methods deals with the significant deviation from normal-
ity, potentially introducing inaccuracy and bias into any 
related analysis – for example, analysis of the influence of 
gender on myopia development. Efforts to understand the 
genetic and environmental mechanisms that determine re-
fractive error may be obscured by the standard assumption 
of a normal distribution of refractive error in populations.

Single asymmetric distributions are difficult to apply 
to refractive error data, create difficulties comparing sub-
groups using standard statistics and do not fit mechanis-
tic concepts of refractive development.5 Mixture models, 
where component distributions are weighted and added 
to match the overall observed distribution, have been 
used in other fields and have potential to overcome these 
issues.6 Three studies have proposed mixture models for 
refractive data,5,7,8 but the proposals have not been widely 
adopted. Thorn7 and Flitcroft5 both focussed on the un-
derlying mechanisms that might explain the success of 
describing refractive error distributions by adding two 
Gaussian (normal) components. Rozema et al.8 tested mix-
tures of up to six Gaussian components; however, their use 
of clinical data potentially introduces selection bias that 
clouds the generalisability of the model conclusions.

No further investigation of the statistical accuracy, ap-
propriateness or even use of mixture modelling to describe 
refractive distributions has been found. We explored mix-
ture modelling options for describing population-based 
refractive distributions and compare the accuracy of the 
models identified.

M ETHO DS

We identified publicly available raw datasets of refrac-
tive error in defined populations via literature search, 
web search and key informant advice. Our key informants 
were a range of experts with knowledge of refractive error 
epidemiology work around the world. We also identified 
published descriptions of refractive error distributions via 
a systematic search strategy.9 The published descriptions 
were most commonly graphs of density or frequency ver-
sus refractive error, which we digitised into binned datasets 
using the juicr package for R (rdrr.io/github/mjlajeunesse/
juicr/). Our systematic search strategy was built on key 
concepts of “refractive error”, “epidemiology” and “popu-
lation”.9 Inclusion criteria were population-based sampling 
representative of clearly defined communities that quanti-
fied distance refractive error, clearly described the use (or 
not) of cycloplegic agents and reported sample size and 
participation rate. Exclusion criteria were self-reported 
refractive error and data from populations defined by dis-
ease state or condition.9

K E Y W O R D S
epidemiology, hyperopia, myopia, population distribution, refractive error, statistical models

Key points

•	 Efforts to understand refractive error develop-
ment and improve eye care access are hampered 
by the current standard of describing refractive 
error distributions by summary statistics such as 
mean, variance and/or prevalence.

•	 Two- and three-Gaussian-component mixture 
models can accurately describe accurately a 
wide variety of population-based refractive 
error distributions, and the ex-Gaussian additive 
model is a potentially useful alternative.

•	 Our recommended hierarchy for reporting re-
fractive error population data: (i) repository 
of de-identified raw data or described by (ii) 
two- or three-component Gaussian mixture 
models, (iii) high-quality frequency distribution 
or (iv) mean, standard deviation, skewness and 
kurtosis.
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Mixture models combine component distributions via 
weighting to describe the overall distribution observed in 
epidemiologic research. Component distributions can take 
any form, but Gaussian (normal) components are appeal-
ing in the refractive case as they are the easiest to relate to 
underlying processes.5,7 A Gaussian mixture of Κ compo-
nents has the form:

where 
(

�, �2
)

 is a normal distribution with a mean of � 
and a variance of �2, �i is the mixing weight for component 
i such that 

∑�

i=1
�i = 1 and � is a vector of parameters to be 

estimated. The expectation–maximization (EM) algorithm 
is often used to find parameter estimates for the Κ mean/
variance pairs 

(

�i , �
2
i

)

 and K−1 mixing weights. A three-
component Gaussian mixture, for example, has eight param-
eters that need to be estimated.

Additionally, we noted that adding an exponential 
component to a Gaussian component – that is, using the 
ex-Gaussian additive distribution – would generate the 
skewness and kurtosis common in population distribu-
tions of refractive error, potentially providing an accurate 
model.6 In its natural form, the ex-Gaussian additive distri-
bution generates a positive skewness between zero and 
two. This level of positive skewness is commonly seen in 
populations with low levels of myopia, such as preschool-
age Europeans. To generate the negative skewness 
common in populations from school age onwards, the 
sign of all SER details was reversed to enable the expo-
nential component in the model to match the observed 
skewness.

The ex-Gaussian distribution is the sum of indepen-
dent normal and exponential random variables, Z = X + Y  , 
where X  is a normal distribution 

(

�, �2
)

 with mean of � 
and variance of �2 and Y  is an exponential distribution with 
mean λ. The three parameters �, �2 and � can be estimated 
from the sample mean, variance and skewness of the ob-
served data.6 When skewness of the observed distribution 
was negative, myopia was denoted as “+” while hyperopia 
was denoted as “−” to enable the model to match the ob-
served skewness.

We worked in the R environment (r-proje​ct.org, and 
rstud​io.com), which provides adaptable options for fitting 
mixture distributions via numerous freely available pack-
ages including gamlss, MixTools, FlexMix, FPC, Mclust, 
MixReg, MixDist and MixR.10,11 MixR (github.com/GaryB​
AYLOR/​mixR) was our first preference for fitting Gaussian-
component mixture distributions because it is able to fit 
both raw and binned data and provides a wide range of 
fitting accuracy estimates, using the EM algorithm.12 The 
Generalized Additive Models for Location, Scale and Shape 
(GAMLSS, gamlss.com) and e1071 (cran.r-proje​ct.org/web/
packa​ges/e1071) packages were used to fit ex-Gaussian ad-
ditive distributions.

The fitting algorithms and comparison statistics are 
more powerful when modelling raw data compared with 
binned data. So, the raw, all-ages datasets were modelled 
to compare fitting accuracy by visual observation, then 
by Bayesian information criterion (BIC). BIC is based on 
the likelihood function and is closely related to the Akaike 
Information Criterion but aims to prevent overfitting by 
penalising additional parameters in the model.13 The low-
est BIC indicates the simplest, most accurate model.

The three models considered most useful by a combi-
nation of BIC and adaptability were then used to estimate 
the prevalence of refractive error at four representative 
refractive cut-points. The prevalence estimates from these 
three models, and from a single-Gaussian distribution as 
the accepted standard, were compared with observed 
data. This modelling and comparison were repeated with 
the all-ages raw data, the raw data divided into age de-
cades and all binned datasets identified by our system-
atic search strategy. The four representative refractive 
cut-points were high myopia (SER ≤ −5.00 D), low myopia 
(SER ≤ −0.50 D), low hyperopia (SER ≥ +0.50 D) and high 
hyperopia (SER ≥ +4.00 D) when modelling the raw data. 
We matched these cut-points as closely as possible when 
modelling the binned data but adjusted each as required 
to maximise accuracy in response to the bin boundaries 
provided by the publications. That is, when the published 
bin boundaries did not match our representative cut-
points, we used cut-points at the bin boundary closest to 
our representative cut-points. The combination of raw and 
binned datasets enabled assessment of the effect of data 
scarcity and diversity.

R ESULTS

Identification of refractive error datasets

The National Health and Nutrition Surveys (NHaNES) of 
the United States and South Korea were the two pub-
licly available repositories of raw refractive error data 
found.14,15 Each is population-based, sampling multiple 
thousands of participants from across the respective 
countries, and each has been repeated multiple times. 
US NHaNES samples all ages, with vision data available 
for those aged ≥12-years from the 1971–1974, 1999–2000, 
2001–2002, 2003–2004, 2005–2006 and 2007–2008 it-
erations of the survey. Korean NHaNES samples all ages 
≥5 years, with vision data available from the 2008, 2009, 
2010, 2011 and 2012 iterations of the survey. NHaNES 
does not use cycloplegia in either country. While the raw 
data are not nationally representative, nationally rep-
resentative prevalence data can be derived via various 
adjustments based on demographic information such as 
age, sex, location, ethnicity and education. However, by 
their size, diversity and systematic sampling and testing, 
both NHaNES datasets provide useful opportunities for 
testing refractive distribution modelling. We used data 

p(�) =

K
∑

i=1

�i
(

�i , �
2
i

)
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from all available ages at the overlapping time point – 
the 2007–2008 US and 2008 Korean NHaNES.

An additional benefit of these datasets is the refrac-
tive diversity between South Korea and the United 
States. For example, myopia prevalence (≤−0.50 D) in 
20- to 29-year-old participants is 80.7% in South Korea 
compared with 47.7% in the United States. The diver-
sity is a useful challenge for the models. Another bene-
fit of NHaNES data is that participant numbers are large 
enough to be analysed by age decade, which reveals fur-
ther diversity of refractive distributions due to age and/
or cohort effects.

The raw refractive data obtained from both US (right 
eye data from 6034 participants) and Korean (right eye data 
from 4473 participants) NHaNES were in sphero-cylindrical 
form. We converted this to SER by adding the sphere and 
half the cylinder power.

Our systematic search strategy identified 665 pub-
lished papers with population-based refractive error data 
from clearly defined communities. All 21 Global Burden 
of Disease study regions were represented by at least one 
study, demonstrating geographic spread.16 The highest 
number of studies were from the East Asia, Western Europe 
and North Africa-Middle East regions. Data collection oc-
curred between 1917 and 2020, although most occurred 
between 1999 and 2019. Single datasets are sometimes 
used by multiple papers and this duplication has not been 
removed. With this caveat in mind, there were over 6000 
reports of refractive error prevalence, with many papers 
reporting for multiple sub-groups within their sample and 
at several refractive cut-points.

From the 665 papers publishing population-based re-
fractive error data, there were 168 quantifications of the 
refractive error spectrum providing significantly greater 
information than simply refractive error prevalence at one 
or a few refractive cut-points. Fifty-three of these provided 
density or frequency distributions of refractive error that 
could be arranged into ≥15 refractive bins with clear defi-
nitions and method descriptions. The average number of 
bins was 32, with a standard deviation of 21. There was no 
dataset duplication in the binned refractive distribution 
subset, so the duplication within the broader search strat-
egy did not affect our analysis of refractive distribution 
fitting model accuracy. NHaNES data published as binned 
datasets were excluded from this analysis to avoid replica-
tion with our analysis of the NHaNES raw data. The binned 
refractive data included were from 12 Global Burden of 
Disease regions: East Africa,17 North Africa-Middle East,18,19 
South Asia,20–22 East Asia,23–27 South East Asia,28 Oceania,29 
Tropical Latin America,30 North America High Income,31–33 
Asia Pacific High Income,34–38 Australasia,4,39 Western 
Europe40–48 and Eastern Europe.46 All were published in 
SER form. Some publications grouped participants by fea-
tures such as age, sex or ethnicity and provided refractive 
distributions for each group; we accepted each as they 
posed differing challenges in terms of mean, variance, 
skew and kurtosis.

Model comparison part 1 – visual 
observation and fitting statistics

Multiple mixed Gaussian fits and an ex-Gaussian fit of the 
all-ages US and Korean NHaNES data are shown in Figure 1. 
By visual observation, mixture distributions of two- to six-
Gaussian components and the ex-Gaussian addition dis-
tribution all appear to describe the data better than the 
single-Gaussian model.

The BIC of each Gaussian mixture model fit of a refrac-
tive error distribution was recorded for the all-ages US 
NHaNES data, the all-ages Korean NHaNES data, seven sep-
arate age decade groups of the US NHaNES data and seven 
separate age decade groups of the Korean NHaNES data. 
The BIC consistently and significantly reduced, suggest-
ing a better fit, from a single-Gaussian-component model 
to a two or more Gaussian-component mixture model. 
However, there were minimal differences between two- 
and six-component mixtures. Across the 16 data group-
ings, the BIC means and standard deviations relative to 1 
for the single-Gaussian model were 0.89 ± 0.05, 0.88 ± 0.06, 
0.89 ± 0.06, 0.89 ± 0.06 and 0.90 ± 0.06 for two-, three-, four-, 
five- and six-Gaussian-component models, respectively. 
Remembering that BIC penalises model complexity, these 
results do not necessarily mean that the three-Gaussian-
component models achieved a more accurate fit than the 
more complex models. However, balancing accuracy and 
simplicity, and avoiding overfitting, the two- or three-
Gaussian-component models are preferred.

Model comparison part 2 – accuracy of 
refractive error prevalence estimates

Another way to compare the accuracy of refractive error dis-
tribution models is to test their ability to estimate the prev-
alence of refractive errors at particular cut-points. Based 
on the BIC results for model-fitting of the US and Korean 
raw data across all ages and within specific decades, we 
selected the two- and three-Gaussian-component mixture 
models to compare with a single-Gaussian model as the ac-
cepted standard, and the ex-Gaussian additive model as an 
interesting alternative. The “observed” prevalence at each 
cut-point was given by the raw data count, while “mod-
elled” prevalence was the estimate derived from a model. 
We plotted the difference between the observed and mod-
elled prevalence, against the observed prevalence, at each 
cut-point for the all-ages distributions and each age dec-
ade distribution of both the US and Korean NHaNES raw 
datasets. The results for each model are shown in Figure 2.

From Figure  2, means ± standard deviations for ob-
served prevalence minus estimated prevalence were 
−3.0% ± 6.3% for the single-Gaussian model, 0.5% ± 1.9% 
for two-Gaussian, 0.6% ± 1.5% for three-Gaussian and 
−1.8% ± 4.0% for ex-Gaussian model. Two- and three-
Gaussian-component mixture models give model-
estimated prevalence closer to the observed prevalence 
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compared with the single-Gaussian or ex-Gaussian mod-
els. The ex-Gaussian model appears to have greater dif-
ficulty predicting the prevalence of low hyperopia than 
the prevalence of low myopia. However, it is worth noting 
that the ex-Gaussian is significantly more accurate than a 
single-Gaussian and can be used with less data input than 
multiple-Gaussian mixture models.

While Figure 2 shows that the US and Korean NHaNES 
datasets, grouped as all-ages and by age decade, provide a 
wide range of prevalence (0.1% to 81%) and skewness (−3.6 
to −0.2) to challenge the models, it is still valuable to test 
model performance across a wider range of data types. To 
do this, we next used the high-quality binned refractive 
distributions in published papers identified by our sys-
tematic search strategy to estimate refractive prevalence 
at four refractive cut-points. These data varied greatly in 
participant age, ethnicity and location, as well as the num-
ber of bins into which the refractive distributions were di-
vided. Figure 3 shows the accuracy of the single-Gaussian 
model was worse than each of the other models: means ± 
standard deviations for each model were −2.3% ± 7.3% for 
single-Gaussian, 0.4% ± 3.5% for two-Gaussian, 0.4% ± 3.3% 
for three-Gaussian and −1.2% ± 5.4% for ex-Gaussian.

D ISCUSSIO N

While there has been some debate between active versus 
passive modulation of refractive growth,49 strong sup-
port has emerged over time for active emmetropisation 
driven by visual experience.4,5,50–52 After the major period 
of growth, development and emmetropisation has oc-
curred, the complex population distribution of refractive 
errors that emerges is partly due to identifiable heteroge-
neity such as age, period, cohort, ethnicity, sex, education 
and urbanisation. However, even when participants are 
sub-grouped to isolate these factors, the distribution of 
refractive error in population-based samples remains non-
normal, presumably due to variations in refractive genet-
ics and visual experience. Perhaps the clearest published 
examples of this are from military conscription surveys.34,36

Our analysis demonstrates the ability of multiple-
Gaussian mixture models to describe the refractive devel-
opment heterogeneity within a wide variety of population 
samples. It is tempting to imply biological meaning in the 
relationship – for example, that each Gaussian component 
of a mixture model represents a specific variation in refrac-
tive genetics or aligns with clinically meaningful groups 
like myopia, emmetropia and hyperopia, with the variance 
of each component representing the effects of the range of 

F I G U R E  1   All-ages 2007–2008 US (left) and 2008 Korean (right) 
NHaNES data in white columns fitted with a one- to six-Gaussian mix 
(a–f, respectively, with components (Comp) as shaded areas and the 
mixture distribution shown as the black line) and an ex-Gaussian mix 
(g, with the shaded area showing the addition of the exponential and 
Gaussian components).
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visual experience. However, our analysis does not provide 
any proof of the underlying mechanism, only that mixed-
Gaussian models are a reasonably accurate way to describe 
observed distributions of refractive error. Even so, the ex-
istence of a plausible underlying mechanism is reassuring 
when considering the use of mixture models in measuring 
and understanding distributions of refractive error.

“All models are wrong” is a common statistics aphorism53 
but can less nihilistically be expanded to “All models are 
wrong, but some are useful”. We have argued that there is a 
need to better understand the distribution of refractive er-
rors in populations, and we have shown that mixture mod-
elling is, while not perfect, a substantial improvement on 
the currently accepted standard of a single-Gaussian model. 
Although multiple-Gaussian mixtures outperform the ex-
Gaussian additive model when raw data are available, the 
ex-Gaussian model still appears useful where there is limited 
binned distribution data and particularly when only sum-
mary statistics are available for a particular population. It is 

important to understand the imperfections of the models 
but that each can be useful for predicting the prevalence of 
refractive error at standardised refractive cut-points.

A major strength of our analysis is that all the refrac-
tive data, both raw and binned, were population-based. 
This overcomes the possible bias of clinical data such 
as that used by Rozema et al.8 Even so, it is worth noting 
that Rozema et al.8 came to similar conclusions from their 
analysis of clinical refractive data. Similarly, our findings 
appear consistently robust across the widely diverse range 
of population-based data we obtained. One limitation in 
our analysis is that by analysing SER, we have averaged out 
some additional complexities of refractive error such as 
astigmatism. A clear understanding of astigmatism is crit-
ical in planning and delivering integrated people-centred 
eye care, so methods of taking it into account in modelling 
are also needed.

The ability to analyse and compare data across different 
studies accurately will facilitate progress in understanding 

F I G U R E  2   Comparison of prevalence from raw data counts (observed) with prevalence estimated by models (modelled), for US and Korean 
NHaNES data divided into age decades. Data for high myopia (SER ≤ −5.00 D), low myopia (SER ≤ −0.50 D), low hyperopia (SER ≥ +0.50 D), high 
hyperopia (SER ≥ +4.00 D) are shown as different colours on each graph. The size of the data points shows the skewness in the observed distribution. 
Observed prevalence is compared with estimates from single-Gaussian (top left), two-Gaussian-component (top right), three-Gaussian-component 
(bottom left) and ex-Gaussian (bottom right) models. The solid, dark grey lines show the average difference between observed and modelled, with 
the dotted lines showing one standard deviation above (model under-estimated) and below (model over-estimated) the average.
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refractive error development and improving eye care ac-
cess and delivery. The systematic search strategy used here 
suggests most publications simply report refractive error 
prevalence at non-standardised cut-points, which are dif-
ficult to compare. We have also shown that it is inaccurate, 
and potentially biased and misleading, to assume normality 
in grouped comparisons. As such, it seems worth consider-
ing a hierarchy of data sharing and description that would 
maximise the power and potential of meta-analyses, while 
recognising that the first priority is not always possible. Our 
recommended hierarchy would be to publish:

1.	 Full datasets of de-identified participant-level data in 
open-access repositories such as those provided by the 
US and Korean NHaNES.14,15 This would be in line with 
the United Nations Educational, Scientific and Cultural 
Organization's (UNESCO's) 2021 Recommendation on 
Open Science54 and new US government policy re-
garding publicly funded research.55

2.	 A two- or three-component Gaussian mixture model 
describing the refractive error distribution/s, which our 
results demonstrate to be accurate in a variety of popu-
lations. For example, as per our Methods section, a three-
component Gaussian mixture model can be specified by 
three mean/variance pairs and two mixing weights.

3.	 A high-quality frequency distribution, or binned data-
sets of 25 bins or more, describing the refractive error 
distribution/s. These generally need to be modelled (e.g., 
by multiple-Gaussian or ex-Gaussian mixture models) to 
be used accurately in meta-analyses.

4.	 The mean, standard deviation, skewness and kurtosis of 
the refractive error distribution/s, which would enable 
modelling using the ex-Gaussian additive distribution.

Each of the four levels of this hierarchy offers significant 
advantages over currently commonly quoted simple sum-
mary statistics such as mean, standard deviation and prev-
alence at specific cut-points.

F I G U R E  3   Comparison of published prevalence (observed) with prevalence estimated by models (modelled), for 53 published refractive error 
distributions provided as density or frequency in varying numbers of bins. There are four observed-modelled comparison points on each graph from 
each distribution – one each for high myopia, low myopia, low hyperopia and high hyperopia. Observed prevalence is compared with estimates from 
single-Gaussian (top left), two-Gaussian-component (top right), three-Gaussian-component (bottom left) and ex-Gaussian (bottom right) models. 
The solid dark grey lines show the average difference between observed and modelled, with the dotted lines showing one standard deviation above 
(model under-estimated) and below (model over-estimated) the average.
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