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Abstract

Max-stable processes are a popular tool for the study of environmental extremes, and
the extremal skew-r process is a general model that allows for a flexible extremal
dependence structure. For inference on max-stable processes with high-dimensional
data, exact likelihood-based estimation is computationally intractable. Composite
likelihoods, using lower dimensional components, and Stephenson-Tawn likelihoods,
using occurrence times of maxima, are both attractive methods to circumvent this
issue for moderate dimensions. In this article we establish the theoretical formulae for
simulations of and inference for the extremal skew-¢ process. We also incorporate the
Stephenson-Tawn concept into the composite likelihood framework, giving greater
statistical and computational efficiency for higher-order composite likelihoods. We
compare 2-way (pairwise), 3-way (triplewise), 4-way, 5-way and 10-way compos-
ite likelihoods for models of up to 100 dimensions. Furthermore, we propose cdf
approximations for the Stephenson-Tawn likelihood function, leading to large com-
putational gains, and enabling accurate fitting of models in large dimensions in only a
few minutes. We illustrate our methodology with an application to a 90-dimensional
temperature dataset from Melbourne, Australia.

Keywords Extremes - Max-stable processes - Composite likelihood -
Stephenson-Tawn likelihood - Quasi-Monte Carlo approximation
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1 Introduction

In the current environmental context, modelling the extremes of natural processes
is receiving ever growing attention (see, e.g., Davison et al. (2012); Cooley et al.
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(2012)). A sound knowledge of the extremal behaviour of temperature, precipitation
and winds is crucial as these events often lead to catastrophes with a strong impact
on human life. Such events are spatial by nature and max-stable processes are a con-
venient tool to analyse spatial extremes which can extrapolate beyond the observed
data.

Max-stable processes arise as the pointwise maxima of an infinite number of
suitably normalised stochastic processes. Consider Y1, ..., ¥,, n independent repli-
cations of a real-valued stochastic process {Y (s)};cs With continuous sample paths
on the spatial domain S, a compact subset of R¥, k > 1, representing a k-dimensional
region of interest. If there exists sequences of continuous functions a,(s) > 0 and
b, (s) € R such that the rescaled pointwise maxima

max Yj(s) - bn(s),
j=1l,...n a,(s)
converge weakly as n — oo to a process Z(s), s € S, with non-degenerate margins,
then the limiting process {Z (s)},es is called a max-stable process (see de Haan 1984;
de Haan and Ferreira 2006, Ch. 9)

The construction of max-stable models is enabled by the spectral representation
of max-stable processes of Schlather (2002), which extends the work of de Haan
(1984) to random functions and is defined as follows. Let {W (s)};es be a real-valued
stochastic process with continuous sample paths on S such that

E {sup W(s)} <00, my(s) =E[{W()}L] € (0,00), Vs € S,
seS

for some fixed v > 0, where {W(-)}}} = max{W(.), 0}". Let {¢;};>1 be the points of
an inhomogeneous Poisson point process on (0, oo) with intensity vz =+ v > 0,

which are independent of Wi, W», ..., which are independent copies of W. If we
define
Z(s) = max ;;Z;-‘(s), seS, 1)
j=12,..
with
Z5(s) = {W; )}y H{my ()}, )

then Z is a max-stable process with common v-Fréchet univariate margins (Opitz
2013). The spectral representation of de Haan (1984) can be retrieved by setting
Z7(s) = f(s—X), where X ; are the points of a homogeneous Poisson point process
on RF with intensity measure A(dx) and f(-) is a unimodal continuous probability
density function.

For a finite set of spatial locations {s;}i=1,..« € &, the finite-dimensional
distribution of Z(s) is given by

Gi)=Pr{Z <z,i=1,....d} =exp{-V(©@)}, z2=(@1,---,24) >0, (3)

where V is a function defined as

Vz) = ]E|: max —{W(Si)}i:l
i=1,...d 7' my(s;)

which fully characterises the dependence structure between extremes. It is referred
to as the exponent function. If the margins are unit Fréchet distributed, i.e. v = 1
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in the above representation (1), then Z is referred to as a simple max-stable pro-
cess. The most widely used max-stable models include the well-known Gaussian
extreme-value process commonly referred to as the Smith model (Smith 1990), the
Schlather or extremal Gaussian process (Schlather 2002), the geometric Gaussian
process (Davison et al. 2012), the Brown-Resnick process (Brown and Resnick 1977;
Kabluchko et al. 2009) and the extremal-¢ (Opitz 2013; Nikoloulopoulos et al. 2009).
Motivated by the need for flexible models, Beranger et al. (2017) proposed a wide
family of max-stable processes — the extremal skew-¢ process — allowing for skew-
ness in the dependence structure. There W (s) is taken to be a skew-normal random
field on s € S with finite d-dimensional distribution SN (2, &, 7), with , & € R?,
T respectively representing the correlation matrix, slant and extension parameters.
Assuming unit-Fréchet margins, the d-dimensional exponent function is given by

d 11/ T
- v j . O o o o
V(z) = E Zil\lld—l (( <Z;_pi.j>ajeli> ;Qi,di,l’i,Ki,U—l—l), “4)
i=1

1=p2; \3i

with z; = z(s), 2§ = (zjm; )", mjy = my(s;). Furthermore W,_; is a (d — 1)-
dimensional non-central extended skew-: distribution with correlation matrix 5_2,?’,
shape of € R?!, extension 77 € R, non-centrality «f € R and v + 1 degrees of
freedom, where I = {1, ...,d}, I; = I\{i}, and p; ; is the (i, j)-th element of Q. See
Appendix A.1 for a definition of the non-central extended skew-s distribution and
Appendix A.2 for the expression of m,(s) and additional details about the parame-
ters. It is easy to see that setting « to the zero vector and = 0 recovers the extremal-
process and further fixing v = 1 reduces to the Schlather model. The extremal skew-¢
process has the appealing characteristic of being non-stationary, where v controls the
level of overall dependence: smaller values indicate high dependence and vice versa
(see Beranger and Padoan 2015; Nikoloulopoulos et al. 2009).

The ability to exactly simulate data from a max-stable process is important for
assessing the performance of inference procedures, and for making predictions under
the fitted model. Simulations can be used to evaluate the probability that an environ-
mental field (temperature, precipitation, etc.) exceeds some critical level across some
region (S) despite only being observed at a finite number of locations (Buishand et al.
2008; Blanchet and Davison 2011). Conditional simulations can be of interest, e.g.
for prediction, depending on the existence of constraints. Unconditional process sim-
ulations play an important role in generating conditional simulations (Dombry et al.
2016).

As defined above, max-stable processes arise as the pointwise maxima over an
infinite number of random functions (c.f. (1)) which at first glance might seem to
require the use of finite approximations. Schlather (2002) first proposed an exact
simulation procedure by showing that for some models only a finite number of
points {¢;};>1 and stochastic processes {W;(s)};>; will contribute to the componen-
twise maxima. More recently (Dieker and Mikosch 2015) and Thibaud and Opitz
(2015) respectively developed exact simulation procedures for the Brown-Resnick
and extremal- processes. Dombry et al. (2016) extended the approach from Dieker
and Mikosch (2015) and used it for the simulation of max-stable processes using
either the spectral measure or through the simulation of extremal functions, the lat-
ter being computationally more efficient. Other recent work is also given by Oesting
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et al. (2018) and Liu et al. (2016). Conditional simulation of max-stable processes
was first studied by Wang and Stoev (2011), and shortly afterwards Dombry and
Eyi-Minko (2013) and Dombry et al. (2013) defined a general framework.

In recent years the d-dimensional distribution functions of most of the widely used
max-stable models have been made available. See e.g. Genton et al. (2011) for the
Smith model, Huser and Davison (2013) for the Brown-Resnick and Eq. 4 for the
extremal skew-z. However, due to the exponential form of the distribution function
(3), as the dimension increases, there is an explosion in the number of terms in the
likelihood function

||

La(z;6) =exp{=V(z: )} x Y [[-Vu(z6),
MePy k=1
where P, is the set of all possible partitions of {1, ..., d}, each partition I1 € P, has
elements 7y, for k = 1, ..., ITI|, and Vg, (-) represents the partial derivatives of V(-)

w.r.t 7. The cardinality of P, the set of all possible partitions IT of {1,..., d}, cor-
responds to the d-th Bell number, making full likelihood inference computationally
intractable for high-dimensional data.

As a result, composite likelihood (CL) methods using pairs (Padoan et al.2010;
Davison and Gholamrezaee 2012; Davison et al. 2012) and triplets (Genton et al.
2011; Huser and Davison 2013) but also higher orders (Castruccio et al. 2016), have
been investigated. Under some mild conditions, CL estimators have been shown to
be consistent and asymptotically normal (Padoan et al. 2010), and thus are an attrac-
tive substitute to full likelihood estimation. Additionally Sang and Genton (2014)
and Castruccio et al. (2016) have suggested the use of weighted composite likeli-
hood with binary weights in order to truncate the likelihood and solely conserve the
most informative tuples. However, despite being consistent, CL estimators can have
a low efficiency compared to full likelihood estimators (Huser et al. 2016). CL effi-
ciency has mainly been studied for pairs and triples (e.g. Huser et al. 2016). Only
Castruccio et al. (2016) consider higher orders and compare them to the full likeli-
hood, but this is limited to models of up to dimension d = 11. Under the assumption
that the spectral random vectors (equivalent to the Z7 given in Eq. 2) of the mul-
tivariate max-stable distributions have known conditional distribution, Bienveniie
and Robert (2017) demonstrate that the partial derivative of the exponent func-
tion can be written as univariate integrals, allowing for high-dimensional extremes
modelling.

An alternative method developed by Stephenson and Tawn (2005) produced a
likelihood simplification when the time occurrences of each block maxima are
recorded. The censored Poisson likelihood approach introduced by Wadsworth and
Tawn (2014) extends the Stephenson-Tawn (ST) likelihood, which can be seen as
a special case, and highlights large efficiency gains. A drawback of the ST likeli-
hood is the possibility of introducing bias, in particular when the times of occurrence
(hitting scenarios) are not drawn from their limiting distribution (Wadsworth 2015),
which is more likely when the number of dimensions is high relative to the num-
ber of events recorded. Wadsworth (2015) derived a second-order bias correction for
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moderately high dimensions. Thibaud et al. (2016) considered a Bayesian hierarchi-
cal model using the Stephenson-Tawn likelihood which enables calculation of the
full likelihood of the Brown-Resnick process. Recently Huser et al. (2019) proposed
a stochastic expectation-maximisation algorithm which rewrites the full likelihood
as the sum of ST likelihoods. They provide numerical results for the Brown-Resnick
model in dimension d = 10, considering 10 independent replicates of the process.
Whitaker et al. (2019) also proposed to aggregate data in order to use pairwise CL in
up to d = 100 dimensions.

Coupled with the development of new technologies, the hope of better under-
standing extreme phenomena has resulted in more abundant data and a need
for well performing estimation procedures. The aim of this work is to intro-
duce some tools allowing the use of flexible max-stable process models, such as
the extremal skew-z, and to establish an inferential methodology that permits the
use of these models in high dimensions. We propose combining the CL and ST
approaches in order to perform high-dimensional inference. This further reduces
the computational burden of computing the likelihood function, although calculat-
ing high-dimensional cdfs is still required. The ST approach is statistically efficient
if the information on the hitting scenario is drawn from the limiting distribution.
For the cdfs involved in the likelihood we propose the use of quasi-Monte Carlo
approximation methods (see Section 3.2). This accordingly admits the possibil-
ity of fitting max-stable models in dimensions up to d = 100 for the extremal-
and extremal skew-t models, within a relatively short computational timeframe.
Davison and Gholamrezaee (2012) measured the effect of including the event time
information into the pairwise composite likelihood context, but did not investi-
gate the possibility of using the Stephenson-Tawn likelihood for high-dimensional
inference.

The remainder of this paper is organised as follows: Section 2 develops the
procedure to perform exact and conditional simulations from the extremal skew-
process (as required for assessing parameter estimation performance, and subse-
quent predictive inference), and derives the partial derivative of its exponent function
in any dimension necessary for inference. Section 3 proposes some quasi-Monte
Carlo approximations of the cdfs embedded in the ST likelihood. The trade-off
between statistical and computational efficiency for the ST likelihood as well as
for a combination of the ST and CL likelihoods is investigated via simulation stud-
ies. Section 4 provides an illustrative application to daily maximum temperatures
in Melbourne, Australia, highlighting the need for flexible models and inferential
procedures. Section 5 concludes with a discussion.

2 The extremal skew-t process
2.1 Exact simulations

Exact simulation of data from a max-stable process is necessary to properly evaluate
any inference process for this model, and exact conditional simulation is important
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for process predictions under the fitted model. In order to perform exact simulations
of a max-stable process, Algorithm 2 of Dombry et al. (2016) requires the simulation
of random functions Y;(s) = Z;f (s)/ Z;‘ (so) with distribution Py, for sp € S, where
Z7%(s) is defined in Eq. 2. The following Proposition establishes the distribution Py,
required to sample from the extremal skew-r model.

Proposition 1 Consider the extremal skew-t process defined in Section 1 with some covariance
function K. For all sg € S, the distribution Py, is equal to the distribution of TYmoy/m,
where my = (M4, ...,mgy), T = {T(s)}ses is an extended skew-t process with location and
scale functions

K (s1,52) — K(s0, 5s1)K (50, 52)

=K d K =
wu(s) (s0,s) an (51, 82) Sl

slant vector o, extension (Oto-i—O[TZd;o)«/ v + 1, non-centrality —t and v+1 degrees of freedom.

Proof See Appendix A.3 O
2.2 Conditional simulations

The algorithm provided in (Dombry et al. 2013, Theorem 1) is a three-step
procedure for conditional simulation of max-stable processes. This methodology
relies on the knowledge of the conditional intensity function, defined as follows.
Assuming unit Fréchet margins, the spectral representation (1) can be rewritten
as
Z(s) = max {{;W;(s)"}/{m4(s)} = max ¢j,
j=12,... j=L2,...

where {¢;};>1 are the points of an homogeneous Poisson point process on (0, co) with
intensity dA(¢) = ¢~ 2d¢. Let s = (s1,...,54) € S%. For all Borel sets A ¢ R?, the
Poisson point process ® = {¢;};>1 on C = C{S} the space of continuous real-valued
functions on S, has intensity measure

As(A) = /:o Pr{cW(s)" /m(s) € A} "2d¢ = /Aks(v)dv- ®)

Note that in the above representation of the max-stable process Z(s), Wi(s) is
replaced by W(s) so that the point process @ is regular, i.e. Ag(dz) = As(z)dz for all
s € 8¢. The conditional intensity function is then given by

At,s) (1, v)
As (V)

Dombry et al. (2013) give the closed form expression of the conditional intensity
function for the Brown-Resnick and Schlather models, whereas Ribatet (2013) derive
those of the extremal-7. The following Proposition provides the conditional intensity
function for the extremal skew-7 model.

Mejs.o (@) = . (ts)eS"™™M,  (u,v) e R" x RY. (6)

Proposition 2 Consider the representation of the extremal skew-t process in Section 1 at
(t,5) € 8™ with slant i) = (o, o) € R+ and extension parameter 7¢,s) € R. Pro-
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g_zt S_Zts

vided the correlation matrix S_Z(m) = [ o O
st s

] is positive definite, the conditional intensity

function (6) is given by
m
Atls,o (W) = Y (uo§ Ht|s,vs Q5,0 Ot|s,vs Tt|s,vs Kt|s,v» ths,v) v H(er(ti)ul‘l_v)l/v

i=1

Qq, () & o oTH—1,0 O O . O—-10O
‘?tx\s.v Q0 (W) =0 T 00, @ = Q@ — Qs Q1 Qe

Qt|s,v = ooy, O = diag(fz)l/z, Tyls,0 = (0t + S_Z;ls_zstat)Tvo(U + d)l/zQQS (vO)—l/Z’ Ktls,o =
—Tt.5), Vels.o =V 4+ d, v° = (vm ()Y and u® = (um.(0))'/".

5 -1
where Mtls,v = Qtst v°, Qt\s,v =

Proof See Appendix A.4 O

From Proposition 2, notice that the conditional intensity function of the extremal
skew-r model is the density of T (s)"/m(s), where T is a non-central extended skew-
t process with parameters: fis(s,v, Qjs,v, Xrjs,v» Ttjs,vs Kejs,o a0Nd Vyjs », Which is closely
related to Proposition 1.

2.3 Inference

Composite likelihood methods are the main strategies to bypass the computational
limitations of the full likelihood approach. In particular Padoan et al. (2010) and Sang
and Genton (2014) considered the weighted composite likelihood, for which the j-th
order is defined by
I Ya
CLiz0) = [] [expt=VGg:0)x Y [[-Vusio)| . 7
geQ? MeP, k=1

for some weights w, > 0, where QE/ ) represents the set of all possible subsets of size
jof{l,...,d} and z, is a j-dimensional subvector of z € RY, P, is the set of all pos-
sible partitions of ¢ where each partition IT € P, has elements 7, for k = 1, ..., |,
and Vg, (-) represents the partial derivatives of V() w.r.t 7. Wang and Stoev (2011)
call the partition IT the hitting scenario since it defines clusters of variables or spa-
tial locations whose maxima comes from the same event. The estimated parameter
vector § maximising (7) can be shown to be consistent and asymptotically normally
distributed (see Padoan et al. 2010). If the margins are jointly estimated with the
dependence parameters, then the support of the parameter space depends on the
parameters, which might lead to identifiability issues. However standard maximum
likelihood asymptotics are still available under most practical modelling situations
(Reich and Shaby 1985).

Stephenson and Tawn (2005) consider a different approach which relies on the
knowledge of time occurrences of each block maxima. This means that for the n-th
block, say z", an observed partition I1” is associated with it, and the likelihood is then
given by

]
ST(z;0) = exp{—V(z: )} x [ | = Vi, (z: ). ®)
k=1
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In order to compute either of the likelihoods presented above it is required to
be able to compute partial derivatives of the exponent function V up to the d-th
order. Wadsworth and Tawn (2014) stress that the conditional intensity function (6)
of {Z(sm41), ..., Z(sa)} given {Z(s1) = z1, ..., Z(sm) = Zm}, 1.€. A it:alStm 2t @mt1:d)s
is equivalent to

—Vi.4(2)
—Vim (Z1:m, 001g—m) ’
where ap.. = (ap, . .., a.), and the denominator denotes the m-dimensional marginal
intensity Ay, (z1.»). Hence the partial derivatives V., (z) are obtained by integrating
the conditional intensity w.r.t. z,+1.s and then multiplying by — V., (21:m, 001g—m).
Wadsworth and Tawn (2014) give the partial derivatives of the V function for the
Brown-Resnick process while Castruccio et al. (2016) also provide these results for
the logistic and Reich-Shaby (Reich and Shaby 2012) models.

Proposition 3 Consider the extremal skew-t model. The partial derivatives of the V function
(4) are given as follows

—Vim (@) = VYa—m (z31+1:d; Mes 2, Oy Tes Kes Vc)

1/v
2v=2)/2),=m+1p (%) N (&I:m./m +v =1, m+ v) I, (mi+Z,-1_v)
)(m+v)/2

)

/2|12 (ZTInS_Tl o

I:le:m q)(tl*:m{] + QQ];m (afzm)}il/z)

where W (-; k, V) denotes the univariate t cdf with non-centrality parameter k and v degrees
of freedom, z5., = (zl:,,,m_,_(s];m))l/” € R™, the index c represents (im + 1 : d)|(1 : m),

where the parameters [ic, 0, U, T, Kc, Ve are defined as in Proposition 2 and &1., =

aTInz?:mQQ]:m (25, € Rwitha},, € R™ and 1}, € R respectively the m-dimensional

marginal slant and extension parameter.

Proof See Appendix A. O

3 Simulation results

In this section we use the results given in Section 2 to perform an intensive simulation
study for the extremal-s and the extremal skew-r model. Inference for these models
has received little attention and thus this Section aims at quantifying the improve-
ments associated with the use of higher order CLs than the traditional 2-wise (pairs)
and 3-wise (triplets). We also present some strategies to allow for the use of high
dimensional models (here up to d = 100) at a reasonable computational cost.

3.1 Simulation design

In the following we generate 50 independent temporal replicates (say annual max-
ima) from the extremal-r and the extremal skew-r max-stable models at d locations
uniformly generated over the region S = [—5, 5] x [—5, 5] using Proposition 1 with
unit variance and power exponential correlation function p(h) = exp{—(||k|l/r)"},
r>0,0 <n <2, where || - || is the L, norm. The different correlation functions con-
sidered are represented in Fig. 1 (right panel): three smoothness scenarios n = 1, 1.5
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Fig. 1 Realisations of the extremal-7 (left) and extremal skew-¢ (middle) models with n = 1, r = 3 and
v = 1. Right panel represents the power exponential correlation function p (h) with smoothness n = 1, 1.5
and 1.95 (solid, dashed and dotted lines) and the range r = 1.5, 3 and 4.5 (red, green and blue colours)

and 1.95 (solid, dashed and dotted lines) and three levels of spatial dependence by
setting the range parameter to r = 1.5, 3 and 4.5 (red, green and blue colours).

When working with the student-s distribution, it is known that estimates of v are
sometimes very large and variable (Fernandez and Steel 1999). By extension, this
phenomenom is also present when working with the non-central extended skew-t
distribution. Davison et al. (2012) have stressed that simultaneously estimating r, n
and v is a delicate task, and Huser and Genton (2016) have noted that the degree of
freedom v of the extremal-7 is difficult to estimate. Thus v tends to be fixed while
focusing on the remaining parameters. Here we fix v = 1, which corresponds to
the Schlather model (and its skew equivalent). Simultaneous estimation of v and the
remaining parameters is possible, as shown in Beranger et al. (2017) for the extremal
skew-r and Padoan (2013) among others for the extremal-7, and we implement this
strategy in Section 4.

The slant parameter is defined as a function of space S, i.e. o; = a(s;) = Bisi1 +
Basi» where s; = (si1, si2) € S,i = 1, ..., d, and in this example we choose 8; = 8, = 5.
We use 6; to denote a parameter vector obtained by maximisation of the CL; and 6,
to denote the use of the CL, (corresponding to the full likelihood).

The algorithms used to generate the extremal-s and the extremal skew-7 models are
given in pseudo-code in Appendix C. The image plots of Fig. 1 illustrate a realisation
from the extremal-r and extremal skew-r models on the region S when n = 1, r =3
and v = 1 (left and middle panels). The extremal skew-s algorithm incorporates a
stochastic representation of the extended skew-¢ distribution given in Arellano-Valle
and Genton (2010). For each replicate the algorithms also include simulation of the
hitting scenario IT. This allows us to use the ST likelihood in Eq. 8, which greatly
simplifies the evaluation of both CL,; and CL;. An alternative approach that avoids
the need to compute the exponent function for all possible partitions IT is to treat the
hitting scenario as missing and use the expectation—-maximization algorithm (Huser
et al. 2019).

3.2 Stephenson-Tawn likelihood evaluation

For each observation, the log-likelihood from (8) includes the evaluation of V (z; 6)
and of log(—Vy, (z; 6)) for k = 1, ..., |TI|. This respectively requires d evaluations of
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W,_1(-) and |IT1| evaluations of the form log(¥;_,, (-)), where m = |mx|. As discussed by
Dombry et al. (2016) the evaluation of these cdfs is a computationally difficult task
even for moderate d, and we thus suggest to overcome this by controlling the degree
of approximation of these quantities. Extended skew-s distribution functions can be
written in terms of the multivariate -distribution, which we evaluate using quasi-
Monte Carlo approximations; see the algorithm in Section 3.2 of Genz and Bretz
(2002). The term ‘quasi’ refers to the fact that the Monte Carlo simulations are based
on lattice points and are therefore more evenly distributed than a standard Monte
Carlo algorithm. See also Genz (1992, 1993) for the evaluation of the multivariate
normal distribution, as required for Brown-Resnick processes.

The computational importance of multivariate z-cdf (or normal cdf) evaluation
within max-stable process models has been previously discussed; see e.g. Wadsworth
and Tawn (2014), Castruccio et al. (2016), Thibaud et al. (2016), and de Fondeville
and Davison (2018). For instance, Thibaud et al. (2016) consider Monte Carlo esti-
mates of the Gaussian cdf involved in the Brown-Resnick model while de Fondeville
and Davison (2018) show that quasi-Monte Carlo methods produce faster conver-
gence rates than classical Monte Carlo estimates. de Fondeville and Davison (2018)
also further reduce the computation time by using randomly shifted deterministic lat-
tice rules to compute multivariate normal distribution functions and argue that their
methodology can be extended to the extremal-r model.

The approach we use is as follows. The original algorithm in Genz and Bretz
(2002) controls the absolute error (we use ¢ = 0.001). It is important to adjust the
algorithm, controlling the error on a log-scale to take account of the fact that the
logarithm of W,_,,(-) is required. Fewer Monte Carlo simulations are then needed.
The evaluations of W,_,,(-) in Vg, (z; 0) are also relatively more important than those
of W;_1(-) in V(z; 6). The algorithm parameters N, and N,,,, control the minimum
and maximum number of simulations used. The maximum number is used only if the
approximation error remains above e.

Table 1 provides the different N,;, and N, levels considered in each j-wise
CL estimation. For the 2-wise and 3-wise CL estimations of the extremal-r model,
the approximation error almost always reduces below e before reaching N,,,.. The
case j = d corresponds to the full likelihood, where two different approximations
(Type I and Type II) are considered. These are obtained by varying the minimum
and maximum number of quasi-Monte Carlo simulations. Type I is the same level as
when j = 4 or 5 whereas Type II is a rougher approximation also used when j = 10.
Section 3.3 discusses ST likelihood approximations for the cases d = 20, d = 50, and
d = 100.

Table 1 Number of quasi-Monte Carlo simulations N, Nyyax to compute each W;_,,(-) and W;_;(-)
terms in Vy, (z; ) for each j-wise composite likelihood. The case j = d corresponds to the full likelihood,
where two different approximations are considered

j 2 3 4 5 10 d(Typel)  (TypelI)
W, () 100,000  100,1000 50,500 50,500 20,200 50,500 20,200
W) 10,100 10,100 5,50 5,50 2,20 5,50 2,20
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Likelihood evaluations for the extremal skew-s are obviously slower than the
simpler extremal-t because the former requires the evaluation of the multivariate
extended skew-s cdf. Likelihood evaluations can easily be parallelized over the
number of observations. Every likelihood evaluation conducted in this section was
evaluated in parallel using 16 CPUs. An alternative would be use d CPUs to par-
allelize the V(z; 0) and log(—Vy, (z; 6)) evaluations directly, perhaps combined with
vectorised operations (Warne et al. 2019). It would even be possible to do both, if a
large enough number of CPUs were available.

3.3 Approximation of the Stephenson-Tawn likelihood

We first investigate the effect of the cdf approximations on the parameter esti-
mates obtained using the full (i.e. non composite) likelihood. Define the root mean
square error (RMSE) of an estimator 6 of 6, over 500 replicates, by RMSE®#) =

Jb(0)? + sd()2, where the bias is b@) = 6 — 0, 6 = 33%6;/500, and the standard

deviation sd(d) = \/ 3290 (0; — 6)2/499. Table 2 provides a comparison of the RMSEs
of the smooth and range estimators (respectively 7 and 7) for the extremal-s and
extremal skew-r models obtained using Type I and Type II approximations of the cdf
terms. Table 4 in Appendix B provides corresponding bias estimates.

As expected, a larger number of sites (from 20 to 100) and better approximations
(Type I rather than Type II) yield smaller RMSEs. For fixed smoothness and dimen-
sion, as the process becomes more spread (r large), the RMSE of the range estimator
7 tends to increase. This might be explained by the difficulty to dissociate indepen-
dent site locations. When the range r is fixed, as the process becomes smoother (5
large) the smooth estimator 77 becomes more accurate. The RMSEs of the smoothness
and range parameters are larger in the four parameter model due to the additional
model complexity.

The estimation of B; and B, which define the d-dimensional slant parameter
vector as a function of space, is less robust. Maximum likelihood estimation meth-
ods for skewed distributions often yield similar robustness and identifiability issues.
Our simulation revealed the presence of a very few abnormally large skewness
parameters, impacting the RMSE values.

Overall, Table 2 indicates that the ST likelihood yields accurate estimates for the
model parameters. Wadsworth and Tawn (2014) and Huser et al. (2016) have high-
lighted the presence of bias which increases with the dimension d and under weaker
dependence when the hitting scenario does not come from the limiting distribution of
scenarios. In the above analysis the data are simulated exactly from the process with
hitting scenarios (see Appendix C), and it is thus unsurprising to observe biases that
are small and decreasing with dimension d for the parameter estimates of both the
extremal-r and extremal skew-r models (see Table 4 in Appendix B).

Figure 2 gives computational times under the same settings as Table 2. It illustrates
the mean time and its 95% confidence region to maximise the likelihood function in
parallel over 16 CPUs, using the Type I (black) and Type II (grey) approximations. As
expected, the computation time is lower when using the rougher approximation (Type
IT) and increases with the number of sites. Focusing on the extremal skew-z, using

@ Springer



B. Beranger et al.

664

VL0 8690 691°0 S000 vLTO ¥LTO <COI'0 ¥00°0 <OI'0 €0I'0 S€0'0 +00°0 6600 <000 <TSOO <000 €00 <2000 o
0090 €SS0 €vI'0 ¥00°0 6500 0LO0 <TLOO TO00 9050 LvSO 6200 €000 L900 <000 0v00 1000 LIOO <000 I se1=ul
60 1v€0 10€°0 ¥C0°0 LCTO €0T0 CTLTO ¥v€0°0 ILOO0 TLOO LLOO 8200 SSI'0 +100 1600 <CIO0 6£00 €100 I
SST0 6£C0 6LC0 200 S¥O0 100 ¢CI'0 6100 8900 [L00 €SO0 1200 LTI'O 1100 8900 100 8200 1100 I os1=1U
SIT0 61T0 69¢0 0v0°0 I€I'0 I1I°'0 CI€0 S€00 IvI'0 OvI'0 9110 S¥0'0 LLTO TCO0 6810 1200 LLOO STO0 I
6500 €SO0 L€CO 8CO0 S$800 0600 €0TO 1€00 9010 8600 OIT'O #¥0°0 S61'0 SI00 8TI'0 LIOO ¢SO0 000 I 001="04 o001=P
1970 20C0 8S1'0 +¥000 69C°0 ¢8C0 600 +000 L9CT ¢€6C'lT 9¥0'0 0100 I0I'0 2000 <¢900 €000 6200 000 I
891°0 8¥I°0 III'0 €000 vITO SIT0 1800 €000 LEI'O SYI'0 S¥O'0 8000 9800 <000 6¥0°0 <000 €200 +00°0 I se1=u
LOE'0 ¥0E'0 LLTO 8TO0 6vE0 SYI'0 S8I'0 6200 6910 €81°0 860°0 8€00 €SI'0 ¥I00 9600 9100 9¥0°0 000 I
€510 9S1°0 6CC0 1200 vOI'0 <TI0 061°0 #C0°0 II1°0 8II'0 8900 [€00 6€1'0 €100 S600 €100 6£00 <CIOO I os1=1U
¥9¢°0 8IT0 SO0 S¥00 9610 6810 99C0 <TYO'0 9IC0 ¥ITO <TSI'0 1S0°0 €ST0 €C00 LSI'O TCOO 6800 1500 I
9IT0 0¢T0 v9€0 <Te00 9LI'0 9IT0 11T0 ¥€00 6110 SLI'O 0CI'0 S¥0'0 LOTO 8100 LEL'O TCOO LSOO vC00 I o01=U4 o0s=p
9er’'0  L9E°0 0ITO0 8000 6090 <TESO 6TI'0 6100 9LF0 6TS0 0600 8200 9110 S000 L80O 6000 6700 8100 I
w0 €9¢0 €¢81°0 9000 0Cy'0 0cr'0 6¢€1°0 1100 0060 €9CT 0LOO +200 CIT'0O €000 LLOO 8000 I€O0 SC00 I se1=1u
10¥'0 €Iv'0 Sve0 6€00 €C€0 ¥Ce0 9¢C0 0S00 6S€0 €9¢0 Trl'0 9600 9¢C0 LCOO 9S1°0 TEOO ¥L00 S¥00 I
LTV 620 0SP'0 9¢0°0 S6€0 90¥0 8ECO0 9¥0'0 6680 <TOL'L CTCL'O0 ¥II'0 CeCO 0€00 #91°'0 9¢0°0 9L00 900 I os1=1U
€88°0 1€8°0 0L9°0 101'0 €680 €90 8L¥'0 LIT'0O v6£0 08€0 €CC0 90I'0 8LEOD w00 9¥C0 8¥0'0 +CI'0 19070 o
¥8C°0 0I€0 9970 ¥SO'0 8¥r'0 6SS0 96€0 1800 LLYO T8LO ¥91'0 ¥60°0 6I¥'0 L¥O'O 09C0 €SO0 STI'0 8500 I 001=t oz=p

g g fa v g g fa v g iy la ul a i fa i L ‘o odAy,

Sy=4 0¢ =+ SrI=4 Sy=- 0¢ =+ SrI=4
J-MY[S [RWANXD J-[eWwAnNXd

suonesIuIxew 93eo1[dor ()OS UO PIseq oIe SUOHER[NO[E)) "POIOPISU0D oIk SIS (O] PUL (S ‘07 = P Uaym [ J[qeL, ur udAId suogewrxoidde [
adA7, pue 1 odAT, pooyr[ayI] [[0 9y} SUIS ‘S[OPOUI J-M3YS [BWAIXS PUB J-[BUWIAIIXS Y} JO 103024 1ajowrered oy (Y29 /g <Lu /)y = fg pue (Y4 fl) = [g 105 sSHSINY 31981

pringer

AQs



High-dimensional inference using the extremal skew-t process 665

n=1.00 n=1.50 n=1.95 n=1.00 n=1.50 n=1.95
0 1 T 0 T T
~ 7 1 1 ~ 1 |
P 1 ] — 1 |
£ ! ! £ ! '
S e 4 1 [l IS o - 1 !
~ 1 1 ~ 1 |
(0] 1 [l [0 1 |
E »1 : ! E o+ ! !
}_ 1 1 l_ 1 |

o e & e e & e le e s oAb 4 ‘:‘ ) ‘:‘ oo

v o ©© © o o ©» o o 6 o © © o ©u o o o

d=50 d=50

n=1.00 n=1.50 n=1.95 n=1.00 n=1.50 n=1.95
o l | e | I
—_ 1 | — 1 |
£ ! ! £ ! '
1= e 1 1 IS o 4 1 |
~ 1 1 ~ 1 |
(0] 1 [} [0 1 |
E 1 : : E v ! |

- ' - S EEHERHEN
NIRRT o ! !

© 9 L » o v H» o o @ 9 L » o » H» o 9

=100 =100

n=1.00 n=1.50 n=1.95 n=1.00 n=1.50 n=1.95
o l | e | I
—_ 1 | — | |
£ ! ! £ ! '
£ 24 1 | € 24 1 1
~ 1 1 ~ 1 |
[0} | ' [0) | |
E o ! : E o : |
'_ l |I| 1 l_ 1 |
o : ! o ! !

© 9 b » o v H» o o @ 9 L » o » H» o 9

Fig.2 Mean time (in minutes) and 95% confidence region for the maximisation of the extremal-# (left) and
extremal skew-# (right) full likelihood function, using the Type I (black) and Type II (grey) approximations
as given in Table 1, for d = 20, 50 and 100 (top to bottom)

approximation Type I, the median maximisation times are around one, three and six
minutes respectively for d = 20, d = 50 and 4 = 100. These values are relatively
constant across the different dependence structures and can be halved by using the
Type II approximation. Neither the smoothness nor the spread of the processes has a
noticeable impact on the speed.

The computational speed is fast due to both the approximations and the use
of the ST likelihood. For comparison, Castruccio et al. (2016) stated that full
likelihood estimation is limited to ¢ = 12 or 13, and a single iteration of the
expectation-maximisation algorithm of Huser et al. (2019) takes several hours for the
Brown-Resnick model.

For a large number of sites it seems favourable to use the rougher Type II
approximation, which produces substantial gains in computation time at a rela-
tively low accuracy loss. This seems a particularly appealing strategy for complex
high-dimensional models.
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3.4 Composite j-wise likelihoods

We now investigate the performance of various high-order composite likelihoods
using the full likelihood as reference. The composite likelihood defined in Eq. 7
requires the computation of the () elements in QY. For fixed dimension , even a
moderately high j (compared to ) will require higher computational cost than the
full likelihood. It is reasonable to believe that the required number of elements of
QE/ ) should decrease as j increases, reducing the computational burden for similar
efficiency level. We therefore set binary weights in Eq. 7 such that only a restricted
number of the (‘j) elements are selected. For j € {1,...,d} and some ¢ € Q7 we
define the weights as
1 if max; kegizk l1Si — Skl < u

wy = ;
a 0 otherwise

s

where u > 0.

In the following we focus on d = 20 and we consider different thresholds u such
that approximately 50 tuples are used to compute each CL function. See also Cas-
truccio et al. (2016), who compare efficiencies of CL estimators in smaller (d = 11)
dimensions.

We evaluate both the statistical efficiency and computational cost of high-order CL.
estimators. Thus a comparison to the full likelihood estimator is established through
a Time Root Relative Efficiency (TRRE) criterion defined as

RMSE(®,) 5 time(6,)
RMSE(®4;) ~ time(d;)’
the product of the Root Relative Efficiency (RRE) and time ratio.

Table 3 presents the TRRE of the parameters of the extremal-r and extremal skew-
t models with various range and smoothness parameters and fixed degree of freedom
v = 1. From the TRRE of the extremal-r estimates (left columns), it appears that low-
dimensional composite likelihood methods give the best trade-off between accuracy
and computational cost. Moreover this becomes more pronounced as the smoothness
and range parameter reduce. For the extremal skew-r estimates (right columns), the
TRREs show that the higher-order composite likelihoods become more efficient, with
e.g. the 4-wise composite likelihood consistently performing well across a wide range
of scenarios.

A more detailed explanation of these results is provided by separately analysing
statistical and computational efficiencies. Table 5 in Appendix B provides the
RMSEs. It highlights that the RMSEs are reducing as j increases, with the highest
statistical efficiency obtained for j = 10. Part of this trend is hidden by the con-
stant number of tuples considered across each method and the increased degree of
approximation as function of j.

Figure 3 provides the associated computational timings. Figure 3 demonstrates
that the lowest computation times for the extremal skew-s (bottom panels) are shared
by the pairwise composite likelihood (j = 2) and the full likelihood (j = ). For the
extremal-7 (top panels) the maximisation times for j = 2 are lower than for j = d and
increase gradually from j =2 up to j = 10.

TRRE(6;) =
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Table3 Time root relative efficiency (TRRE) of 7j; /7; and 7 /7; / Bi il By ; for the extremal- and extremal
skew-¢ models with v = 1 and d = 20. Larger values are preferable under the TRRE criterion

extremal-7 extremal skew-¢

r=1.5 r=3.0 r=4.5 r=1.5 r=3.0 r=4.5

n = 1.00 j=2 103/106 62/72 56/50 06/01/07/06 04/06/05/04 03/03/02/02

j=3 33/35 32/28 27/23 07/02/17/12 09/04/12/08 06/05/05/04
j=4 15/18 16/16 16/14 19/19/25/19 21/15/21/10 11/03/07/05
j= 10/11 10/10 09/09 07/01/11/08 10/04/07/04 07/06/04/03
j=10 14/15 14/14 13/13 12/16/17/13 15/19/10/12 08/11/07/06
n =150 j= 64/77 61/77 45/56 11/03/17/09 05/03/04/03 04/03/04/03
j=3 21/29 25/30 25/26 18/02/41/17 10/03/09/06 11/08/13/09
j= 11/16 12/17 13/15 37/31/82/29 12/12/13/08 10/10/12/08
j=5 08/11 08/11 08/09 21/18/34/16 09/02/06/05 09/16/07/05
j=10 12/14 13/15 12/14 28/27/30/19 18/26/19/14 15/23/13/12
n =195 j=2 66/68 36/75 23/58 04/01/11/07 04/02/04/03 03/02/02/02
j= 21/31 19/32 16/29 12/01/18/11 05/03/09/06 03/07/06/04
j= 13/19 20725 18/24 21/28/37/26 07/17/14/10 04/09/04/03
j=5 07/12 14/17 15/17 19/19/26/16 14/25/11/08 11/16/09/07
j=10 09/15 32/20 22/18 13/20/03/04 16/26/10/10 22/19/10/09
5 r=1.5 _ 3.
E 8] E 3 E 5
E g E oS F o
E g £ 8] E e
SRR [SE SR
° 2 3 4 [ j=10 j=d ° 2 =3 j=4 j=5 =10 j=d 2 =3 j4 J=5 =10 j=d

Fig.3 Average time (in minutes) for the maximisation of the j-wise composite likelihood func-
tion of the extremal-¢ (top) and extremal skew-¢ (bottom) for v = 1 and d = 20. Smoothness
values n = 1, 1.5 and 1.95 are represented by solid, dashed and dotted lines. The case j = d
corresponds to full likelihood estimation with the Type II approximation from Table 1
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The same number of tuples are considered in each j-wise composite likelihood;
due to the cdf evaluation, for fixed N,,,, the mean maximisation time increases with ;.
However if the approximation becomes rougher (i.e. if N,,,, decreases for increasing
J), the times can decrease. This confirms the utility of our strategy of controlling the
degree of approximation in the exponent function and its derivatives. The drop in
time between j = 10 and j = d suggests that it might also be useful to consider fewer
tuples as j increases.

Table 5 in Appendix B shows that pairwise and triplewise CLs can yield much
larger RMSEs than higher order (j = 10) CLs. For more flexible high-dimensional
models such as the extremal skew-7, higher order composite likelihoods should be
considered, and these require fine strategies to control the computation time.

We examine the bias of our methodology through Table 6 in Appendix B. The
method seems to yield large biases for low-degree CL for the extremal skew-z
whereas the bias is relatively small for the extremal-z. In general, for fixed approxi-
mation levels and the same number of tuples, increasing the order of the CL increases
the bias.

4 Temperature data example

We present an illustrative analysis of the application of an extremal skew-¢ process
using temperature data around the city of Melbourne, Australia. The data is a gridded
commercial product (Jeffrey et al. 2001) interpolated from a network of weather
stations, recorded during the N = 50 year period 1961-2010. The d = 90 stations are
on a 0.15 degree (approximately 13 kilometre) grid in a 9 by 10 formation. The site
locations are displayed in Fig. 4.

The data consists of summer temperature maxima, taken over the extended
summer period from August to April inclusive. The first maximum is taken over
the August 1961 to April 1962 period, and the last maximum is taken over the
August 2010 to April 2011 period. The maxima showed no evidence of temporal
non-stationarity.

Fig.4 Site locations. (Left) The Australian state of Victoria with the inner Melbourne region highlighted.
(Right) The inner Melbourne region with site locations on a 9 by 10 grid
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We additionally know the day of the year on which the temperature maxima occur.
This should not be used directly for the hitting scenario, because Melbourne heat-
waves often last two or three days. Instead we consider two maxima to belong to
the same event if they occur within three days of each other. For each year we
therefore derive a hitting scenario I1, as defined in Section 2.3. We then use the ST
likelihood, which for a single year is given in Eq. 8. We use full likelihood infer-
ence in preference to j-wise likelihood; this is feasible with d = 90 dimensions
due to the quasi-Monte Carlo approximations of the multivariate ¢ distribution func-
tion (see Section 3). We also employ the powered exponential correlation function
p(h) = exp{—|lh||/r)"} with range parameter r > 0 and smooth parameter 0 < n < 2.

We first fit the marginal distributions using unconstrained location and scale
parameters and shape parameter & = & + §gxg + Eyxy, Where xp and xy are (cen-
tred) easting and northings in 100 kilometre units. This gave & = —0.14(0.01),
£r = 0.02(0.02) and £y = 0.09(0.02), with location and scale parameters as given in
Fig. 5. We then use marginal transformations to fit the dependence structure.

It can be difficult to estimate r, n, and the degrees of freedom parameter v simul-
taneously, so we therefore used a grid search over v = 1, 3, 5. We additionally model
the skewness as @ = oy + agxg + anyxy. At each value of v we optimize over the
range r, the smooth n and the skewness parameters (g, ag, ay). With a fixed degree
of freedom parameter, the fit of the dependence structure took approximately 2 min-
utes on a 16 core machine. We then choose the value of v producing the largest
likelihood. This gave v = 5, 4 = 1.303 and 7 = 8.554, with skewness parameters
a0 = —0.010, g = —0.281 and @y = 0.220. The largest distance between any two site
locations (in 100 kilometre units) is 1.785, and therefore the smallest correlation is
exp[—(1.785/7)"] ~ 0.88, indicating a strong degree of spatial dependence. The north-
ern outskirts of Melbourne, particularly to the north-east around Healesville, contains
less urban and more elevated terrain, and this may contribute to the selection of the
larger value b = 5. The skewness surface is positive to the north-west and negative to
the south-east. Fixing the skewness parameters to zero (that is, fitting the extremal ¢
model) gave ¥ = 5, 7j = 1.254 and 7 = 8.175 and a likelihood ratio test highlighted a
preference for the fit of the extremal skew-r model.

The fitted dependence structure, in additional to the marginal distributions, can
be used for inference on features of interest. Simulations of the process are often
required: they can be performed conditionally on the hitting scenario, or conditionally
on site observations. Figure 6 shows two simulations of the process, conditioning on
at most two heatwave events causing all annual maxima.

24
2.2

20

Fig.5 Estimated marginal location (left) and scale (right) parameters

@ Springer



670 B. Beranger et al.

45 45
40 40
35 35
30 30

Fig. 6 Simulations from the fitted max-stable process, conditioning on at most two heatwave events
causing all maxima

5 Discussion

This article focuses on the general class of extremal skew-r max-stable processes.
We first equipped ourselves with the tools required for exact and conditional simu-
lations from the process and derived the necessary results to evaluate the likelihood
in any dimension. The known time of occurrence of each maxima has allowed us
to use the Stephenson-Tawn likelihood. We proposed strategies to reduce the com-
putational burden associated with the likelihood evaluation using quasi-Monte Carlo
approximations. Increasing the dimension at the cost of rougher approximation of
the likelihood has proven to be a good strategy: parameter estimation is possible
within a reasonable time in dimension up to d = 100 while maintaining accuracy
levels.

We have proposed combining the Stephenson-Tawn likelihood and composite like-
lihood methodology. Using this approach we assessed the statistical efficiency of
high-order composite likelihood methods and examined their computational cost.
Our simulation study outlines a reduction of the root mean squared error for higher-
degree composite likelihoods under a fixed degree of approximation and equal
numbers of tuples. Our results for high-dimensional data suggest that the 4-wise com-
posite likelihood is, under most scenarios, a good estimation method for the extremal
skew-t. We have presented estimation strategies for the flexible extremal skew-¢ pro-
cess which are relatively fast, even in the presence of high-dimensional data. We
have successfully applied them to a 90 dimensional temperature dataset recorded in
Melbourne, Australia.

The results presented in this work could potentially be expanded upon by extend-
ing the hierarchical matrix decompositions of Genton et al. (2018) to multivariate-
cdfs. The selection of an optimal threshold in the definition of the binary weights in
the composite likelihood function could also be examined (Sang and Genton 2014;
Castruccio et al. 2016). Furthermore some of the solutions suggested by Azzalini
and Capitanio (1999), Azzalini and Genton (2008), and Azzalini and Arellano-Valle
(2013) could be implemented to reduce sporadic inaccuracies in the estimation of the
skewness.
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Appendix A: Technical details
A.1 The non-central extended skew-t distribution (Beranger et al. 2017)

Definition 1 Y is a d-dimensional, non-central extended skew-¢ distributed random
vector, denoted by ¥ ~ STy(u, Q, o, T, 1, v), if for y € R it has pdf

Va1, Q, 0, T, K, V) = Valip. @, v) wl]@in |—F o vial,
) v+ 0a-1(2)

where v, (y; 1, @, v) is the pdf of a 4-dimensional ¢-distribution with location x € R?,
d x d scale matrix Q@ and v € R* degrees of freedom, ¥(;a,v) denotes a univariate
non-central ¢ cdf with non-centrality parameter « € R and v degrees of freedom, and
06-12) =2"Q7 2, 2= (v — /o, 0 = diag(Q)?, @ = 0 'Qo~! and Qg(@) = «"Qa. The
associated cdf is

Wy {z; QF k*, v}

V(s w, Q, 0, T,k,0) = —
a(y; ) U @R

where z = (z7,7)7, Wy, 18 a (d + 1)-dimensional (non-central) ¢ cdf with covariance
matrix and non-centrality parameters

Q -3 0
Q= . okt = ,

and v degrees of freedom, and where

s={1+ 05} "* Qa, k={1405@} "k, T={1+05@} .
A.2 Parameters of the exponent function of the extremal skew-t

First of all, we define m ;4 = m(s;) as follows

)

o . 20=2D20((p + 1)/2}\11(04;'?«/1) +L—thv+ D)
mj+=/0 Yj ¢(yj’aj’fj)dyj= ﬁ@[f{]+QQ(C¥)}71/2]

* and rj’f‘ are respectively the marginal shape and extension parameters

j -
and Qg(a) = o ' Qa. This then allows us to obtain the exponent function of the

extremal skew-7 given in Eq. 4 as the sum of (d — 1)-dimensional non-central
extended skew-¢ distribution with correlation matrix Q7 = w;}_‘i Qi a);},.i,
where wy,1,.; = diag(Qu, 1,002 Qupi = Qi — QuiQur, I = {1, ..., d}, I = I\i,
Q=0'1Qo o= diag(Q)l/z. The shape parameter is a; = wy;,.; af; € RA-1

the extension parameter rlc.’ = (Q jriarn + o W+ 1)1/ 2 ¢ R, the non-centrality

K}’ = _{1+Q91j1j._; (oz,j)}—l/zr eR Qflzjzj-_/ (oc,j) = aZS_Z,j,j.jan, and the degrees

where o

of freedom v + 1.
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A.3 Proof of proposition 1

Lemma 1 The finite d-dimensional distribution of the random pro-
cess (W(s)/W(so))ses under the transformed probability measure Pr =
{W(s0)}/m(s0)dPr is equal to the distribution of a non-central extended skew-
t process with mean g, d x d scale matrix f]d, slant vector dy, extension T,
non-centrality kg = —t and vg = v + 1 degrees of freedom, given by

. > — 2700
Hd = %40, Ed=—d ﬁ’;) O’d, &d=VV+1c?)w;1a,
V

g = (g + ZO;dw;la)V v+1,

and where g = (K(x;, Xj)1<i,j,<d» 2d:0 = E(Id = (Kxo,x)1<i<d a=
(a1, ..., 0q), wg = diag(Xq)""? and & = diag(ﬁ)d)l/z.

Proof of Lemma I The proof runs along the same lines as the proof of Lemma 2
in the supplementary material of Dombry et al. (2016). We consider finite dimen-
sional distributions only. Let d > 1 and s1,...,5;4 € S. We assume that the
covariance matrix ¥ = (K (s, 8j))0<i, j<da 18 non singular so that (W (s;))o<i<a4 has
density

o@@'aoly+1)

ot/ [1+ 0z @)

~ 1 -
g(y) = @m)" D2 gey(s) "/ exp{—zyTE_ly}

y € Rd+l,
where @ = (o, o1, ...,0q), Q§_1(5‘) = dTEI&, f) = o 'S and & =
diag(2)'/2. Setting z = (yi/¥0)1<i<d, for all Borel sets Ay, ..., Ag C R,
ﬁr{wem,i:l ..... d} =f Ty /v € Ai =1, dy 208D 4
W (so) Rd+1 moy
[ee] vz T
= [ teeai=t. d}{/ 00L& 00D gy
RY 0 mo+

We deduce that under Pr the random vector (W (si)/ W(s0))1<i<a has density

ooylH'V
f 0 2((y0, y02) dyo
0 mo+

(2m) =+ der(2) =12 /00 b

1oy T
_ ¥ exp{—izTE 1zyé}@(otTw "0, y02) T + T)dyo.
mo+®(t/ [1+ Q= (@)

82

0

@ Springer



High-dimensional inference using the extremal skew-t process 673

- 1/2
where 7 = (1, z) ". Through the change of variable u = (ZTE_IZ> Y0, we obtain
* 4 Lt 1202 ST~ 1
f v eXP{—Ez X zyo}<1>(a @~ (y0, y0z) + T)dyo
_d+v+l o0 ~T ~—1z
- V2r (22*12) 2 / WG () @ (uu n z) du
0
dv ST ~—1s
~. - v d
= (257') TR (7) v <&w/dv; 1, dv> :

where o = (a1, ...,a4),dy, =d+v+1and V(-; k, v) is the cdf of the non-central ¢
distribution with non-centrality parameter « and v degrees of freedom. Thus applying
the definition of mo4, j and 75 from Beranger et al. (2017) we get

7= det(S) 112 (~~_1~)‘d7” *(%) v

Z =
8@ Y(agy/v+1; =15, v+ 1)

1 20:d

and the block decomposition ¥ =
P ( a0 2d

), allows us to write

3 +
Va(z; pa, 2a, v+ DY <°‘0 ol (:)TZZ\/_ >

7) = ;
8 Y(agv/v+ 1 =75, v+ 1)

where 1tg = S4.0, a = (Zq — Ta:0%0.0)/(v + 1) and wy = diag(L4)'/?. Noting
that

VUegvv+ L —tf,v+1) =W Tdi ; _ti v +1
\/1 + &, Tqbq \/1 + &, T4

o _i_awal Aol
v (0~—dZ\/ dy; —t, dv) =V daz + IdA \/dv; -7,d, |,
vixTlz \/v—}- 1+272; 17

where W (-; k, v) denotes the cdf of the univariate non-central ¢ distribution with non-
centrality « and v degrees of freedom, 7/ = oz — 24d:0), @d = /v + lc?)a)gla,
g = (ag + OlTEd;o)«/V TL Iy =0"'%0 o = diag(f))l/2 which leads us to
the conclusion that g(z) is the density of a non-central extended skew-¢ distribution
with parameters iy = Xg4:0, 2d, &4, T4 and kg = —T. O]
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In order to prove Proposition 1, let C; = C{S, [0, o]} denote the space of
continuous non-negative functions on S, and ¢ represent the distribution of the
{W(si)}i/m4, and consider the set A = {f € Cp : f(s1) € Ay,..., f(sq) € Ay}
Then by (Dombry and Eyi-Minko 2013, Proposition 4.2) we have

Py (A) = /C /1 (s) € A} f()o (df)

— E[{W(so)}i/mm{w € Ani= 1,...,d”

e W SO,
—~ W (s}
= Pr{L(SZ)}:' eA,-;i:l,...,d}
i W SOl
- Pr{%(T,-)”+ € A= 1,...,d},
my

where T = (Ty, ..., Ty), T; = W(s;)/ W (sp) which, from Lemma 1, is distributed as

X4 — 24-020:
T~y (Ed;o,%,&dﬁm—f,v+l).

A.4 Proof of Proposition 2
The following Lemma is required in order to complete the proof.

Lemma 2 Under the assumptions of Proposition 2, the intensity function of the
extremal skew-t is

1/v
20=D/2=dH I (400 @ (ggo/d + v; —15,d + ) ]2, (m,.+vl,1—v>

As(v) = =
s (V) Trd/2|QS|1/2QQS(vo)(d+V)/2q)(TS{1 + QQ;I(O[S)}—I/Z)

)

where v° = (vm+(s))1/” eRY @, = as—rv"QQs (v°)1/2 € R and a5 € RY.

Proof By definition of the intensity measure (5), for all s € S? and Borel set A C
R4,

As(A) = / 0 / L{ce'm(s) € A) gs(6)dt ¢ 2z,
Rd

where gg is the density of the random vector W(s), i.e. a centred extended skew
normal random vector with correlation matrix 2, slant oy and extension tgz. The
change of variable v = (m (s))~'¢t" leads to dt = v_dg'_d/"]_[lemilfv;l_v)/vdv
and

0 d v ) —I/U.Qs 1) Tyor—1/v .
AX(A)Z"_d/ fl_[(mmfl*”)]/ B (e T ) O (v ATt 2y,
0 Jai ® (ol + Qg1 (@) ~72)
©)
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where v° = (vm_(s))!/”. Now, through the consecutive change of variables r =

c~Vvandu = 10q, (v°)!/2 we obtain
/0 g0 (077 R) @ (o0 ) e (10)
v/ bu (v°t; Qs) P (otsTv°t + ‘L's> rAtv=lgy
0

o0
(271)‘d/2|s_2s|_1/2v/ = 1exp{ ZQQA( )}q><as-rv°t+rs)dz
0

= Qm) QT v Qg (00T 2m) 2 / u™ )@ (@su + 1) du,
0

where a5 = a v° Qg (v")’l/2 eR.
The remaining 1ntegral is linked to the moments of the extended skew-normal
distribution. Beranger et al. (2017, Appendix A.4) derives the result

1
f V(P (ay + t)dy = 2022 WF("; )w(w_v+1;—r,v+1),

and thus Eq. 10 is equal to

- _ —(d+1)/2 d
20-2)/2=d/21 G172, (voTQ;1v0> 1“(”72L )\p(&s«/w—d; —rs,v+d>.
(1)

Substituting(11) into Eq. 9 completes the proof. O

Assume that (W(t), W(s)) ~ S/\/m+d(§2(,,s),oz(t s)s T(¢,s))» then according to
Beranger et al. (2017, Proposition 1) we have that W (s) ~ SNy (s, af, 1) with

* __ as+§2s_1§2st0{t * I(t,5) O—0,_ 0. 010
% = ronae) B T Jrogaey 2T T S S
Additionally let u° = (umy @)'", v° = (vmp(HYY, mo (@) =
Mg (11, - Mg (b)), i (8) = (mi(51), ... my(s0), u € R™, v € RY. Not-

ing that @(t(t 51+ Qg2 X (oz(t )~ 172y is equal to & (7 (1 + Qg2 1)~ 172y and
applying Lemma 2 to Eq 6 leads to

Q0572 | Loy, @ 0°) |

|§2s|_1/2 QQ (v°)

W (aenvVv+d+m;—tus,v+d+m) ﬁ(m (t')u.l_v>l/v
W (asv/v+d; —1F,v+4d) M '

v+d4+m
2

(v+d+m)
)»t\s,v(u) = n—m/zv—m

Qq,(v°)77

g r)

where a 5) = tx;'t—’s)(u", v")QQ(m> (u®,v°)~ 1/2 and & oy = a*T °0s (v°) 172,
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Following Dombry et al. (2013) and Ribatet (2013) we can show that

Q)| _ { v+d }mm | 0q,,®°v) Qg ,(@° = ps.0) _ 2,07
21 legn] " T 0 0 T v+d P Sler =TT
and pys,0 = S_Ztst_lvo. Thus we have
__v+d+m

Q ( °— s,v)
Miso@) =720 +d) "2 |Qys,01 72 {1 + '—MI}

v+d

r(u+%+m) U (@, 5 v/ v+d+m;—1( 5), v+d+m) pm ﬁ (m (t~)u1_"> 1/v

() W (@gv/v+d; —7,v-+d) ) A ’
and we recognise the m-dimensional Student-t density with mean piss », dispersion
matrix ;s and degree of freedom v + d.

Finally, by considering ass0 = @ 'ar, @ = diag( @2, w0 =
_ _ T o
(as + Q;lﬂstat) v°(d + 1))]/2QS-2(1)°)’1/2 and K¢|s,p = —T(,s) then it is easy to
show that
N (&s\/v +d; -t} v+ d) =V e &)  Vils.w

ST Qs ) [T+ 050 (@is)
v (&(t,s)\/v +d+m; —Tt,s), V+ d+m)

Vels,o + M
=y <ozT z+rt,) — Tty Vesw +
( tls,v s,v Vs + QQ””(Z) (t,s)> Vt|s,v

where z = u° — 44|s,», completes the proof. Note that Qm,v reduces to @ Qo L.

A.5 Partial derivatives of the V function of the extremal skew-t (Lemma 3)

Consider the conditional intensity function of the extremal skew-f model given in
Proposition 2 with s = (51, ..., Sm) = S1uns £ = (Smt1s---55d) = Smt1:ds V= Zl:m
and 4 = Z,;4+1.4. In the following the matrix notation X, = Xs,,, Yab:cd =
X5 p5eq Will be used. Integration w.r.t. 2,414 gives

lydfm (z;zl_l,_l:d;I‘LC’QCvaC’T6‘7KC’UC) (12)
where the index ¢ represents S, +1:4|51:m, Z1:m Such that the parameters are

_ o
= 5—1 QQh (zl:m) &
He = an+1:d;1:1n91;mz?;mv Qe = % cs
c

~ - - ==
Qe = Qut1:d — Qm+1:d;l:mQ];mQl:m;m-ﬁ-l:da

51 & T 1/2 —-1/2
Te = (@1 + 2, Limmt1:d%m+1:d) 2], (v +m) / QQl:m (Z?:m) / ’

~ . =~ 172
Qe = Wclmt1:d, @ = diag(2:) / , Ke=—T, Ve=V+m,
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with 2§, = @uwmi(s10)"Y and 25,1y = @mr1:am+(Smt1:))'". According
to Lemma 2, the m-dimensional marginal density is

1/v
2(v=2)/2),—m+1T (m_'H’) ] (&lzm«/m +v; =1, m+ v) [T, (mi+z»l_”)
72 Qum |2 Qg (25,,) " TI2O(x], {1+ Qg1 (@t}

’

(13)

~1/2 ¢ R, and m-dimensional marginal parame-

~ *T _
where a1:n = al:mz?:m QQ];,,I (Z?:m)
ters

-1 =
x al:m+§21:mQI:/71;m+I:dam+1:d * T

oy = 7., 6 = F——.
Lim JH %t i) T 14001 @)

Combining (12) and Eq. 13 completes the proof.
Setting Ty = O corresponds to an extremal skew-¢# model constructed from a skew-
normal random field rather than an extended skew-normal field. Then

1
_ 2*2-1/2r (; ) V@IV T+ ),

with
- 1=
aj + ij Qjrar;

\/1 +oz, (QI I Qlij;jleﬂJOll

*_
o =

and the associated partial derivatives of the V function are equal to

1
220 (152) @ (@i v m 4 0) [T (miel ™)

7-[m/2vm—1|§_21:m‘1/2Q§_Z].m (ztf:m)(nH—v)/Z s

Wym (Z;1+1;d; Mes e, e, Tc, 0, Vc)

with parameters defined as in Lemma 3.
Setting oy = 1.4 = 0 and 7y = 0 leads to the extremal-# model for which

T2

and the partial derivatives of the V function are

2 (v=2)/2 ,—m+1 (mT-i-v) l—[:n_lz(l v)/v

1/v / /
\I/d—m (Z g Mes Q ’ C) = ’
R T am Q2 0, (2 2

l/v
Qle( )Q

where ,bL/C = Qm+1:d;1:mQ z] m » and Q/ = Ve ¢

1:m

Appendix B: Simulation Tables
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High-dimensional inference using the extremal skew-t process 681

Appendix C: Exact simulation of Extremal skew-t Max Stable Process
with Hitting Scenarios

Below we provide pseudo-code for exact simulation of extremal skew-f max sta-
ble processes with unit Fréchet marginal distributions using Algorithm 2 of Dombry
et al. (2016), extended to include the hitting scenario in the output. This requires
the simulation of an extended skew- distribution; here we use rejection sampling
and the stochastic representation given in Arellano-Valle and Genton (2010). The
simpler extremal-f max stable process only requires the simulation of a multivariate
t-distribution and therefore does not use rejection sampling; this simpler algorithm is
also given below.

When simulating N independent replicates for d sites with the Dombry et al.
(2016) algorithm, it is much more efficient to have the sites in the outer loop and
the replicates in the inner loop, because derivations of quantities from the distribu-
tion of (W (s)/ W (s0))ses are then only performed once for each site (lines 3 to 7 in
the skew-¢ code), irrespective of the number of replicates required. In practice these
quantities should be calculated on the log scale to avoid numerical issues.

In the algorithm below, the input X is derived from the correlation function p (k).
The normalization in line 6 is needed for the simulation of an extended skew-¢ dis-
tribution. Matrix multiplication is not needed here because w is a diagonal matrix.
The term Exp(1) refers to a standard exponential distribution, f,, is a univariate
t-distribution with v, degrees of freedom, N (0, 1) is a standard univariate normal
distribution, and de is a chi-squared distribution with vy degrees of freedom. The
function W (-; v;) is the distribution function of a univariate ¢-distribution, as used in
Eq. (A.5) The code in line 16 simulates from a multivariate z-distribution with shape

matrix X ; and vy degrees of freedom. Lines 20 and 24 are identical by intent.

The index j in the code corresponds to the sp site. We recommend the use of
the eigendecomposition, which is more stable than the Cholesky decomposition.
Moreover, % 4 18 positive semi-definite as the jth row and columns are zero by con-
struction. If the Cholesky decomposition were used then the code would need to
handle the singular component explicitly. The eigendecomposition is slower, but it
can be evaluated outside the loop over the observations (in line 7) and therefore only
d decompositions are required for any N.

The do-while loop in line 12 is the rejection sampling needed to simulate from a
multivariate extended skew-¢ distribution. The Dombry et al. (2016) algorithm also
has a rejection step, with B = 0 in the code indicating rejection via exceeding an
observation on an already simulated site (i.e. on a site with index less than j). If
the simulation is not rejected (line 22) then the outputs are set. A simulated process
will always update the value on the jth site, because there is a singular component
X[j] = 1 and therefore the code would otherwise not enter the while loop at line
10. If the code enters the while loop (line 10), it breaks out of it when E is small
enough that the jth site simulation can never exceed the existing value. The vector V
counts the number of times the while loop executes for each replicate. This ultimately
provides the hitting scenario H.
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Algorithm 1 Extremal Skew-t Process (N Replicates).

Inputs: Correlation ¥3 € R¥¢, Skew a € RY, DoF v € Ry,
Outputs: Replicates Z € RN*? Hitting Scenarios H € RV*4
1 initialize outputs at Z = —oo, H = 0 and initialize V =0 € RV

2 for j=1to ddo

8 | Set $q=3%q—L4;%a and of = Sjaa/(1 4 o’ Sha)'/?
4 Set vy =v +1 and mj; = 2”/27r_1/21"(1/(1/2)\11(@1/3/2; V)
5 Set pg = Bg;; and 74 = V;/sz;d(x and 3y = Sa/va
6 | Set @ = diag(3q)"/? and & = diag(Lq)/? and g = \/Talea and Sg = 15,01
7 Calculate the eigen decomposition f)d = LA2LT
8 fori=1to N do
9 Simulate E ~ Exp(1) and Set E = (E/mj; )~

10 while E > Z[i, ] do

11 Set V[i] = V[i] + 1

12 do

14 for k=1 to ddo

15 L Simulate X [k] ~ N(0,1)

16 Set ¥ = (Y[1],..., Y1d]) = \ v/, IAX

17 while t,, > 74+ 3¢, 44V,

18 Set Y = g+ @Y and B=1

19 fork=1toj—1do

20 if Y[k|E > Z[i,j] then

21 L Set B = 0 and break

22 if B =1 then

23 for k= j to d do

24 if Y[k]E > Z[i, ] then

a8 | Set 2[i.j] = Y[KE and H[i,j] = V[i]

26 Set E = E +Exp(1) and E = (E/m;;)~ "

27 Set Z = Z¥m™! for column vector m = (mi4,...,mgy)
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Algorithm 2 Extremal-t Process (N Replicates).

Inputs: Correlation $q € R4, DoF v € R
Outputs: Replicates Z € RN*? Hitting Scenarios H € RV*4
1 initialize outputs at Z = —oo, H = 0 and initialize V = 0 € RV

2 for j=1to ddo

3 Set pg = Xa; and vy = v + 1 and i}d = (34— Z,l;]-Ej;d)/z/d
4 Calculate the eigendecomposition fld = LA2LT
5 for i=1to N do
6 Simulate E ~ Exp(1) and Set E = E—1/¥
7 while E > Z[i, j] do
8 Set V[i] = V[i] + 1
9 for k=1toddo
10 L Simulate X[k] ~ N(0,1)
11 Set Y = (Y[1],...,Y[d]) = pa + \/va/x%,LAX
12 Set B=1
13 fork=1toj—1do
14 if Y[k]E > Z[i, ] then
15 L Set B =0 and break
16 if B =1 then
17 for k= j toddo
18 if Y[k|E > Z[i,j] then
19 L Set Z[i,j] = Y[k]E and H[i,j] = V1]
20 Set E = E + Exp(1) and E = E~1/¥
21 Set Z = 2%
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