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Abstract
Estimation of extreme quantile regions, spaces in which future extreme events can
occur with a given low probability, even beyond the range of the observed data, is an
important task in the analysis of extremes. Existing methods to estimate such regions
are available, but do not provide any measures of estimation uncertainty. We develop
univariate and bivariate schemes for estimating extreme quantile regions under the
Bayesian paradigm that outperforms existing approaches and provides natural mea-
sures of quantile region estimate uncertainty. We examine the method’s performance
in controlled simulation studies. We illustrate the applicability of the proposed
method by analysing high bivariate quantiles for pairs of pollutants, conditionally on
different temperature gradations, recorded in Milan, Italy.
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1 Introduction

Estimating quantiles and how they can change depending on influential predictors
(i.e. quantile regression) is a recurring problem in many applied fields including
medicine, survival analysis, economics, finance and environmental science (e.g. Yu
et al. 2003). Assessing high quantiles, associated with fixed, low occurrence probabil-
ities that lie beyond the range of n existing data observations, is of crucial importance
in risk management. The solution to such a problem is not obvious when none of the
observed data points exceed this event. It is likely that the exceedance probability, p,
is smaller than 1/n. This is an extreme value problem.

More precisely, consider a random variableX with distribution function F defined
on R+ := (0, ∞). For 0 < p < 1, let Q(p) := F←(1−p) be the (1−p)-th quantile
of F , where F← is the left-continuous inverse function of F , i.e. F←(x) := inf{y :
F(y) � x}. Let X1, . . . , Xn be independent random variables with distribution F .
Interest is in estimating the quantile Q(p) when the exceedance probability p is very
small. We refer to Q as an extreme quantile. The extreme-value approach (e.g. Beir-
lant et al. 2004; de Haan and Ferreira 2006) assumes that as the sample size n grows
to infinity a suitable asymptotic probabilistic model can be used to approximate the
desired quantile. In the asymptotic setting the exceedance probability depends on n,
i.e. p = pn with p → 0 as n → ∞. Hence, for a sufficiently large number of obser-
vations, extreme-value theory can be used to compute an approximation, Qn, of the
extreme quantile.

A more challenging problem is estimating, for some fixed probability, an extreme
bivariate region – a subset of two-dimensional Euclidean space – in which a future
event would fall when none of the two-dimensional observations fall in such a region,
and are likely to lie far from it (e.g. de Haan and Ferreira 2006, Ch. 6). In some appli-
cations there may not be any specific shape for the critical region, whereas in others it
may be well defined. One illustration of the former is air pollution monitoring, where
the critical region is a set of combinations of two pollutants’ concentrations where at
least one of them is at a high level. Here, the shape of the critical region depends on
the type of pollutants and the intensity of their dependence.

Einmahl et al. (2013) proposed a simple and practically useful method for defining
critical regions which are generated through the level sets of a probability density
function f , under suitable conditions (see Section 2.2). Precisely, a critical region is
the level set of f given by

Q = {x ∈ R
2+ : f (x) � α}, (1.1)

with α > 0, such that P(Q) = p for some very small p ∈ (0, 1). We refer to Q as
an extreme quantile region. In particular Q� = {x ∈ R

2+ : f (x) > α} is the set with
smallest area such that P(Q�) = 1 − p. See also Cooley et al. (2017) for an alterna-
tive approach. Let X1, . . . , Xn be independent two-dimensional random vectors with
distribution function F . Similar to the univariate case, the extreme-value approach
suggests adopting an appropriate asymptotic probabilistic model as n approaches
infinity. From this, a set Qn, that is not fixed but depends on n, may be derived such
that P(Qn) = pn with p ≡ pn and p → 0 as n → ∞, which provides a sufficiently
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close approximation to the extreme quantile region. In particular, in both univariate
and bivariate cases we assume the mild condition that np → c ∈ [0, ∞) as n → ∞.

Beyond a definition and a method of estimation of such quantiles, a critical aspect
in practice is to provide some quantification of the uncertainty around the estimates.
Several estimators of extreme quantiles already exist in the univariate setting (e.g.
Beirlant et al. 2004; de Haan and Ferreira 2006; Wang and Li 2015). However, quan-
tifying the uncertainty of these estimators can be difficult as their asymptotic variance
depends on the parameters of second-order conditions which can be problematic to
estimate in some settings. Estimators of extreme quantile regions also exist (Cai et al.
2011; Einmahl et al. 2013) but to the best of our knowledge measures of their uncer-
tainty are not available. A readily applicable uncertainty quantification for extreme
quantiles is the methodological contribution of this article.

In this paper we develop a Bayesian approach for inferring both univariate extreme
quantiles as well as extreme quantile regions. In the univariate case, we define a para-
metric Bayesian method for the extreme quantiles by exploiting the well known and
widely used censored-likelihood approach (e.g. Prescott and Walden 1983; Smith
1994; Ledford and Tawn 1996; Huser et al. 2016; Bienvenüe and Robert 2017), based
on the likelihood function of the univariate Generalized Extreme Value (GEV) fam-
ily of distributions (e.g. Sisson and Coles 2003). Inference is performed using an
adaptive random-walk Metropolis-Hastings algorithm (Garthwaite et al. 2016). In
the bivariate case we combine the univariate approach for the estimation of the GEV
marginal parameters with the non-parametric Bayesian approach for the estimation
of the extremal dependence proposed by Marcon et al. (2016). As a result we obtain
a semi-parametric Bayesian inferential method based on the censored-likelihood cor-
responding to a suitable two-dimensional extreme-value distribution. Through such
a censored-likelihood it is possible to simultaneously estimate the dependence struc-
ture of the extreme-value distribution together with the parameters of its margins,
which are in turn members of the GEV class. The components of such a pseudo-
posterior distribution are combined to produce a pseudo-posterior distribution for the
extreme quantile regions. Accordingly this approach allows for the direct estimation
of extreme quantile intervals and quantile regions, as well as clear measures of their
uncertainty.

There are many settings in environmental science where the analysis of univari-
ate extreme quantiles is of particular concern. These include evaluating tropical
cyclone wind speed conditional on certain climate variables (Jagger and Elsner
2009), precipitation conditional on global climate model projections (Friederichs and
Thorarinsdottir 2012), both precipitation and wind power given outputs from numeri-
cal weather prediction models (Bremnes, 2004a, b), and ozone and particulate matter
concentrations conditional on meteorological variables (Porter et al. 2015). However
it is clear that some environmental variables depend on others: e.g. wind speed is
dependent on wind gust or air pressure (e.g. Marcon et al. 2017), and ozone is depen-
dent on particular matter (e.g. Falk et al. 2019). Similarly, when designing offshore
structures, engineers need estimates of extreme quantiles of oceanographic vari-
ables. Due the strong dependence between the involved variables e.g. wave heights
and wind speeds, bivariate extreme value tools (in the simplest case) are sometimes
necessary (Naess and Karpa 2015). As a consequence, the joint study of two (or
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more) dependent variables will produce a more comprehensive and accurate analysis
because it is based on more available information.

The goal of this article is to provide an inferential framework (i.e. a method and
software to implement it) that can provide estimates of extreme bivariate quantile
regions, which can then be used to inform part of a larger study. For example, relia-
bility engineers designing offshore platforms can use this framework as both a visual
and quantitative tool to produce extreme quantile curves (such as those in Fig. 5) that
can be informative for reliability design. Here, we particularly focus on the problem
of air pollution.

According to the World Health Organisations (WHO) and the Global Ambient Air
Quality Database (2018 update, https://www.who.int/airpollution/en/), air pollution
kills an estimated 7 million people worldwide each year, 4.2 million of which as a
result of exposure to ambient (outdoor) air pollution. Furthermore, 25% of all heart
diseases deaths are attributable to air pollution. Based on WHO guidelines (World
Health Organization 2006) the European policy on air-quality standards (Guerreiro
et al. 2016) regulates emissions of the pollutants particulate matter (PM10), ozone
(O3), nitrogen oxide (NO), nitrogen dioxide (NO2) and sulphur dioxide (SO2), aim-
ing to reduce the negative impact that they have on human health, the environment
and climate. For example, short-term pollutant concentrations (obtained through the
empirical quantiles of pollutants time series) that should not be exceeded in order to
protect against to air pollution peaks are: a daily average concentration of 50μg/m3

(90.4 percentile) for PM10, a daily maximum concentration of 120μg/m3 (93.2 per-
centile) for O3, an hourly average concentration of 200μg/m3 (99.8 percentile) for
NO2 and a daily average concentration of 125μg/m3 (99.2 percentile) for SO2. We
refer to such concentrations as the pollutant limit thresholds. In contrast, long-term
pollutant thresholds are set based on yearly mean concentrations, rather than using
quantiles. See Guerreiro et al. (2016) for details. The above thresholds are deter-
mined for each individual pollutant, although it is well known that some pollutants
are dependent on each other (e.g. Dahlhaus,2000; Clapp and Jenkin 2001; Heffernan
and Tawn 2004; World Health Organization 2006).

With our methodology (and software) we are able to estimate extreme quantiles
while taking into account the dependence between pairs of pollutants, and thereby
be informed about potentially dangerous pollutant concentration combinations. This
will be of particular interest to air pollution emission regulators and public health ana-
lysts. Estimating extreme pollutant concentrations conditional on e.g. meteorological
variables can also provide information on whether some predictors are important
for understanding the evolution of air pollution at high concentration levels. Here,
we investigate this explicitly through an analysis of the behaviour air pollution data
recorded over the last ∼ 20 years in Milan, Italy.

The remainder of this article is organised as follows. In Section 2 we briefly review
the extreme-value approach for approximating the extreme quantiles in both the uni-
variate (Section 2.1) and bivariate (Section 2.2) cases. In Section 3 we introduce
our Bayesian semi-parametric approach for inferring extreme quantiles and extreme
quantile regions. Section 4 provides an extensive simulation study examining the
performance of the proposed method. The article concludes with an analysis of the
extremes of air pollution recorded in Milan (Section 5) followed by a Discussion.
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2 Estimating extreme quantiles

2.1 The univariate case

Let F be a distribution on R+, and assume that F is in the domain of attraction of the
GEV family of distributions, F ∈ D(G). Then, for n = 1, 2, . . . there are norming
constants an > 0 and bn such that

Fn(anx + bn)
n→∞−→ exp

(
− (1 + γ x)

−1/γ
+

)
=: G(x; γ ), (2.1)

where γ > 0 is the extreme-value index that describes the heaviness of the tail of the
distribution G and (a)+ = max(a, 0) (see e.g. de Haan and Ferreira 2006, Ch. 1).

There are several extreme-value based methods for modelling extreme quantiles;
see e.g. de Haan and Ferreira (2006, Ch. 1, 4) and Wang and Li (2015) for a com-
pendium. Here, we briefly review one which is useful for our purposes. By de Haan
and Ferreira (2006, Theorem 1.1.6) the result in Eq. 2.1 is also equivalent to the result

t{1 − F(a(t)x + U(t))} t→∞−→ (1 + γ x)−1/γ , (2.2)

where U(t) = F←(1 − 1/t) for t > 1 and a(·) is a suitable function (de Haan and
Ferreira 2006, Theorem 1.1.6). Let k ≡ kn and assume that k → ∞ and k/n → 0 as
n → ∞. Set t = n/k and y = a(n/k)x + U(n/k). Then, from Eq. 2.2 we obtain

F(y) ≈ 1 − k

n

(
1 + γ

y − μ

σ

)−1/γ

+
, n → ∞, (2.3)

where μ, σ > 0 are location and scale parameters parameters. By few manipulations
and de Haan and Ferreira (2006, Theorem 1.1.8) we have that a(t) ≈ σ andU(t) ≈ μ

as t → ∞. Result Eq. 2.1 is also equivalent to

U(tx) − U(t)

a(t)

t→∞−→ xγ − 1

γ
, (2.4)

see de Haan and Ferreira (Theorem 1.1.6, 2006, for details). Since Q(p) ≡ U(1/p),
from Eq. 2.4 we obtain, using arguments in de Haan and Ferreira (2006, Ch. 3.1),

Q(p) ≈ μ + σ

(
k
np

)γ − 1

γ
as n → ∞. (2.5)

A suitable adjustment of the GEV distribution allows us to also derive the approx-
imate quantile function in Eq. 2.5. Specifically, for some threshold s > 0 and for
x � s, let Fs(x) := P(X � x|X > s). Using de Haan and Ferreira (2006,
Theorem 1.1.6), for an = a(n) and bn = U(n), for all x � s we can write

Fans+bn(anx + bn)
n→∞−→ 1 −

(
1 + γ

x − s

σ̃

)−1/γ

+
=: H((x − s)/σ̃ ; γ ), (2.6)
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where σ̃ = 1+γ s and H(·; γ ) is the Generalized Pareto (GP) family of distributions.
Set y = anx + bn and t := ans + bn, then for large t and any y � t we obtain

F(y) ≈ F(t) + {1 − F(t)}H ((y − t)/σ̄ ; γ )

≈ exp [−{1 − F(t)} {1 − H ((y − t)/σ̄ ; γ )}]
≈ exp

[
−t−1 {1 − H ((t − μ)/σ ; γ )} {1 − H ((y − t)/σ̄ ; γ )}

]

= exp
(
−t−1 (1 + γ (y − μ)/σ)

−1/γ
+

)
≡ G1/t ((y − μ)/σ ; γ ), (2.7)

where σ̄ = σ + γ (t − μ). Writing again F(y) = 1 − p and t = n/k in Eq. 2.7, and
by noting that − log(1−p) ≈ p for p → 0, then the quantile function in Eq. 2.5 can
be obtained by inverting the expression in Eq. 2.7 with respect to p.

2.2 The bivariate case

Let X = (X1, X2) be a random vector with joint distribution function F on R2+ with
margins Fj , j = 1, 2, and probability density function f . Assuming that F ∈ D(G),
then there are sequences of norming constants an > 0 and bn such that

Fn(anx + bn)
n→∞−→ G(x), (2.8)

where G is the so-called bivariate max-stable distribution (de Haan and Ferreira
2006, Ch 6), whose margins G(xj ; γj ) are members of the GEV family Eq. 2.1
with tail indices γj > 0, j = 1, 2. In the following we denote G∗(x) :=
G(x

γ1
1 , x

γ2
2 ), x ∈ R

2+, as an extreme-value distribution with unit-Fréchet margins:
G∗(x1, ∞) = exp(−1/x1) and G∗(∞, x2) = exp(−1/x2) for every x1, x2 > 0.

The convergence result in Eq. 2.8 implies convergence at both marginal and depen-
dence levels. For marginal convergence we have that Eqs. 2.1, 2.2 and 2.3 hold for
Fj , with an,j , bn,j , aj (t), Uj(t) and yj = aj (n/k)xj + Uj(n/k) with j = 1, 2. Fur-
thermore, aj (t) ≈ σj > 0 and Uj(t) ≈ μj > 0 as t → ∞. For convergence of
the dependence structure, for every (x, y) ∈ (0, ∞]2 \ {(∞, ∞)}, from de Haan and
Ferreira (2006, Ch 6.1.2) we have that

t (1 − F(U1(tx1), U2(tx2)))
t→∞−→ − logG∗(x). (2.9)

The result in Eq. 2.9 implies the existence of a measure ν, named the exponent
measure (see de Haan and Ferreira 2006, Ch 6 for details) such that for every x ∈ R

2+,

− logG∗(x) = ν({v ∈ R
2+ : v1 > x1 or v2 > x2}) = 2

∫ 1

0

(
w

x1
∨ 1 − w

x2

)
H(dw),

where H is a probability measure on [0, 1] satisfying the mean constraint∫ 1
0 wH(dw) = ∫ 1

0 (1 − w)H(dw) = 1/2. In the following we denote both the
probability measure and its distribution function by H , with the difference being
determined by the context.

The extreme quantile regions method introduced in Einmahl et al. (2013) requires
also some further assumptions at the density level. The density f is assumed to be
decreasing in each coordinate, outside of (0, M]2 for some M > 0, and bounded
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away from zero on (0, M]2. There exist a nonnegative Lebesgue integrable function
g such that for every x ∈ R

2+,

ν({v ∈ R
2+ : v1 > x1 or v2 > x2}) =

∫∫

{v1>x1 or v2>x2}
g(v)dv.

and on R2+,

tU1(t)U2(t)f (U1(tx1), U2(tx2))
t→∞−→ (γ1γ2)

−1x
1−γ1
1 x

1−γ2
2 g(x) =: q(x). (2.10)

We refer to g and q as the density of the exponent measure and the basic density func-
tion, respectively. By the above assumption on g it follows that H has a continuous
density h := ∂H/∂w on (0, 1) with no atoms at 0 and 1, i.e. H({0}) = H({1}) = 0.
By the homogeneity of g we have that h(w) = 2−1g(w, 1 − w), where r = x1 + x2
and w = x1/r . We refer to H and h as the angular measure and density, respectively.

The extreme-value approach for modelling extreme quantile regionsQ in Eq. 1.1,
works with the set Qn = {

x ∈ R
2 : f (x) � α

}
, where α = αn is not fixed but

depends on the sample size n such that P(Qn) = p with p = pn → 0 as n → ∞.
In particular, Einmahl et al. (2013) suggest focusing on the fixed set S = {x ∈ R

2+ :
q(x) � 1} = {

x ∈ R
2+ : r � q−1∗ (w), w ∈ [0, 1]} that we call the basic set, where

q∗(w) = q(w, 1− w)
− 1

1+γ1+γ2 , q(w, 1− w) = 2w1−γ1(1 − w)1−γ2h(w)

γ1γ2
(2.11)

and where q(w, 1 − w) is obtained from the relation q(rw, r(1 − w)) =
q(w, 1 − w)/r(1+γ1+γ2). Abusing terminology refer to q∗ as the angular basic
density function. According to the exponent measure, the size of S is

ν(S) = 2
∫

[0,1]
q−1∗ (w) h(w)dw. (2.12)

The idea is to then inflate the basic set S into an extreme set, Q̃n, depending on n,
so that P(Q̃n) ≈ p for n → ∞ and such that Q̃n is a good approximation of Qn,
i.e. so that P(Qn�Q̃n)/p → 0 as n → ∞, where B�D = B\D ∪ D\B, for two
nonempty sets B and D. Here we consider a slightly different definition of the set
Q̃n to that given in Einmahl et al. (2013). Specifically, by exploiting the fact that
Uj (n/k) ≈ μj and aj (n/k) ≈ σj , j = 1, 2 as n → ∞, then for large n, we have
that Q̃n can be approximated as

Q̃n ≈

⎧⎪⎨
⎪⎩

⎛
⎜⎝μ1 + σ1

(
kν(S)x1

np

)γ1 − 1

γ1
, μ2 + σ2

(
kν(S)x2

np

)γ2 − 1

γ2

⎞
⎟⎠ : (x1, x2) ∈ S

⎫⎪⎬
⎪⎭
.

(2.13)
The approximation in Eq. 2.13 is consistent with the formula in Eq. 2.5 used to
approximate the univariate extreme quantiles. In Section 3.2 we show how the bivari-
ate max-stable distribution in Eq. 2.8 can be used to estimate the extreme quantile
region in Eq. 2.13.
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3 Inference

3.1 The univariate case

We describe an approximate Bayesian framework for estimating the extreme quan-
tile in Eq. 2.5 for small p (where the meaning of “small p” is given in Section 1).
In particular, we explore the Bayesian paradigm using a censored likelihood (Sisson
and Coles 2003), based on Eq. 2.7. Specifically, let X1, . . . , Xn be independent and
identically distributed random variables with distribution function F on R+, where
F ∈ D(G). First we define a high threshold t . Let X1,n � X2,n � · · · � Xn,n

be the n order statistics and Fn be the empirical distribution function. The thresh-
old may then be defined as T = Xk,n for large k such that 1 − Fn(Xk,n) is
close to one, for instance Fn(Xk,n) = k/n = 0.10, 0.05, 0.01. Next, let y1:n =
(y1, . . . , yn) be a realisation of (X1, . . . , Xn) and t be the corresponding threshold.
Then on the basis of the approximation in Eq. 2.7 we define the censored likelihood
function

L(y1:n; θ) =
n∏

i=1

L(yi; θ),

where each contribution to the likelihood depends on the domain where an observa-
tion yi falls. That is,

L(yi; θ) ∝

⎧⎪⎨
⎪⎩

Gk/n(t; θ), if yi � t,

∂
∂y

Gk/n(y; θ)|y=yi
, if yi > t,

(3.1)

where Gk/n(y; θ) ≡ Gk/n((y −μ)/σ ; γ ) with θ = (μ, σ, γ )�, Gk/n((y −μ)/σ ; γ )

is given in Eq. 2.7 and

∂

∂t
Gk/n(y; θ)|y=yi

= Gk/n((yi − μ)/σ ; γ )

(
1 + γ (yi − μ)

σ

)−1/γ−1 1

σ

k

n
.

Assuming a prior �(θ) for θ ∈ � ⊆ R
3+, we draw samples from the resulting pos-

terior distribution using an adaptive Metropolis-Hastings algorithm. Specifically, we
directly apply the adaptive (Gaussian) random-walk Metropolis-Hastings (RWMH)
algorithm discussed in Garthwaite et al. (2016). The current state of the chain θ (j) at
time j is updated by proposing a draw θ ′ ∼ h(θ |θ (j)) = φ3(θ

(j), τ (j)
(j)) where
φd(a, A) denotes a d-dimensional Gaussian density function with mean a and covari-
ance matrix A. Because h(θ ′|θ) = h(θ |θ ′) is symmetric the acceptance probability
of setting θ (j+1) = θ ′ reduces to

π(j) = min

(
L(y1:n; θ ′)�(θ ′)

L(y1:n; θ (j))�(θ (j))
, 1

)
,
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otherwise θ (j+1) = θ (j). Following Haario et al. (2001), the proposal covariance
matrix 
(j) is specified as


(j+1) =
{

(1 + [τ (j)]2/j)I3, j � 100
1

j−1

∑j

k=1(θ
(k) − θ̄

(j)
)(θ (k) − θ̄

(j)
)� + ([τ (j)]2/j)I3, j > 100,

(3.2)

where Id is the d-dimensional identity matrix, θ̄
(j) = j−1(θ (1) + · · · + θ (j)), and

τ (j) > 0 is a scaling parameter that affects the acceptance rate of proposal parameter
values. Following Garthwaite et al. (2016) we adaptively update τ using a Robbins-
Monro process so that

log τ (j+1) = log τ (j) + c(π(j) − π∗), (3.3)

where c = (2π)1/2 exp(ζ 2
0 /2)/(2ζ0) is a steplength constant, ζ0 = −1/
(π∗/2),

and where 
 is the univariate standard Gaussian distribution function. The parameter
π∗ is the desired overall sampler acceptance probability, here specified as π∗ =
0.234 following Roberts et al. (1997). This algorithm is summarised in Step 1 of
Algorithm 1. Proposed Gaussian updates for the GEV scale parameter are performed
on log σ . See Garthwaite et al. (2016) for further details.

3.2 The bivariate case

Inference for the extreme quantile region Q̃n in Eq. 2.13 requires estimation of the
two sets of marginal parameters θ i = (μi, σj , γi), i = 1, 2, together with the basic
set S and its measure ν(S). In particular, the estimation of the basic set S and its
measure ν(S) in Eq. 2.12 requires estimation of the angular density h. We extend
the Bayesian procedure of the univariate case (Section 3.1) to the bivariate setting to
simultaneously estimate the marginal parameters and the angular density. This frame-
work utilises the censored likelihood based on the bivariate max-stable distribution
in Eq. 2.8.

Specifically, on the basis of the marginal domain of attraction (see Eq. 2.1)
and the approximation in Eq. 2.3 for each marginal distribution, we define the
transformations

zi := zi(·) ≡ zi(·; θ) = k

n

(
1 + γi

· − μi

σi

)−1/γi

+
, i = 1, 2, (3.4)

where θ = (θ1, θ2). From the bivariate domain of attraction (2.8) and the max-
stability property (de Haan and Ferreira 2006, Ch 6), for large y, where y = anx+bn,
we have

F(y) ≈ G(y; ϑ∗),
where ϑ∗ = (θ∗, h), θ∗ = (θ∗

1, θ
∗
2), θ∗

i = (μ∗
i , σ

∗
i , γi), i = 1, 2, and where h is

the angular density. Replicating the arguments involving the Pareto distribution for
deriving the approximations in Eqs. 2.6 and 2.7 for each margin, then for y � t ,
where t = (t1, t2) is a large threshold, we obtain the further approximation

F(y) ≈ exp (−L(z; ϑ)) =: G̃(z; ϑ), y � t, (3.5)

where z = (z1, z2) with zi = zi(yi; θ) given by Eq. 3.4 and where ϑ = (θ , h).
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Following Marcon et al. (2016) we model the angular density using Bernstein
polynomials. Writing L(z) = (z1 + z2)A(v) with v = z2/(z1 + z2), we model
Pickands dependence function A(v) through a Bernstein polynomial of degree κ =
0, 1, . . . as

Aκ(v; βκ) = 1

κ + 1

κ∑
j=0

βjBe(v; j + 1, κ − j + 1), (3.6)

where βκ = (β1, . . . , βκ)� is a parameter vector satisfying suitable conditions so
that Aκ in Eq. 3.6 defines a valid Pickands dependence function (Marcon et al. 2016,
Section 3.1), and Be(·; a, b) is the beta density function with parameters a > 0 and
b > 0. Modelling Pickands dependence function with a polynomial in Bernstein
form is equivalent to modelling the angular distribution with a Bernstein polynomial.
The corresponding angular density in Bernstein form is then

hκ−1(w; ηκ) =
κ−2∑
j=0

(ηj+1 − ηj )Be(w; j + 1, κ − j − 1), (3.7)

where w ∈ [0, 1] and the elements of ηκ = (η0, . . . , ηκ−2)
� must satisfy suitable

conditions so that hκ−1 in Eq. 3.7 is a valid angular density (Marcon et al. 2016,
Section 3.1). The vectors of coefficients βκ and ηκ are related via a one-to-one
relationship (Marcon et al. 2016, Proposition 3.2).

Let (y1, . . . , yn) be a sample of independent bivariate observations from a dis-
tribution F on R

2+, for which F ∈ D(G). Then, exploiting the approximation G̃ in
Eq. 3.5 we construct the censored likelihood function

L(ϑ) =
n∏

i=1

L(yi; ϑ),

where each likelihood contribution depends on the domainwhereyi falls. Specifically,

L(y; ϑ) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G̃(z; ϑ)|z=z(t), if y � t

− ∂z1(y1)
∂y1

G̃(z1, z2; ϑ)L(z1)(z1, z2; ϑ)|z1=z1(y1),z2=z2(t2), if y1 > t1, y2 � t2

− ∂z2(y2)
∂y2

G̃(z1, z2; ϑ)L(z2)(z1, z2; ϑ)|z1=z1(t1),z2=z2(y2), if y1 � t1, y2 > t2

J · G̃(y; ϑ)(L(z1)(z; ϑ)L(z2)(z; ϑ) − L(z1,z2)(z; ϑ)|z=z(y), if y > t,
(3.8)

where

J = ∂z1(y1)

∂y1
· ∂z2(y2)

∂y2
,

L(z1)(z; ϑ) = ∂

∂z1
L(z; ϑ) = Aκ(v; βκ) − vA′

κ(v; βκ),

L(z2)(z; ϑ) = ∂

∂z2
L(z; ϑ) = Aκ(v; βκ) + (1 − v)A′

κ(v; βκ),

L(z1,z2)(z; ϑ) = ∂2

∂z1∂z2
L(z; ϑ) = − 1

z1 + z2
v(1 − v)A′′

κ (v; βκ),

358



Estimation and uncertainty quantification for extreme quantile regions

and where v = z2/(z1 + z2), zi(·; θ), i = 1, 2, is as in Eq. 3.4, A′
κ and A′′

κ are the
first and second derivatives of Aκ with respect to v, and where we re-express the
full vector of unknown parameters as ϑ = (θ1, θ2, κ, βκ). We infer the marginal
GEV parameters and the extremal dependence structure through a semiparamet-
ric Bayesian approach. In particular, we combine the inferential scheme for each
marginal parameter set θ1, θ2 described above with the trans-dimensional MCMC
scheme for inferring the dependence structure over the unknown number of elements
in βκ suggested by Marcon et al. (2016) (see also Antoniano-Villalobos and Walker
2013; Fan and Sisson 2011). The latter takes into account that at each MCMC itera-
tion the dimension of βκ changes with κ and that the size of βκ is potentially infinite
(see Marcon et al. 2016, Section 3.2 for details).

While it is more convenient to derive the likelihood function using the represen-
tation of extremal dependence through Pickands dependence function (Marcon et al.
2016), it is simpler to define a prior distribution on the angular distribution. In this
case, the prior distribution for βκ can be deduced from the prior distribution on
ηκ by exploiting the one-to-one relationship between the two (Marcon et al. 2016).
Accordingly, the MCMC algorithm may be implemented using the likelihood func-
tion parametrised through Pickands dependence function and the prior distribution
for this model that is induced from the prior on the angular distribution.

Recall that for all κ � 3, ηκ must satisfy some suitable constraints so that hκ−1 in
Eq. 3.7 is a valid angular density. Specifically, the elements of ηκ must be a nonde-
creasing sequence in [0, 1] such that their sum is equal to κ/2 (Marcon et al. 2016,
Proposition 3.1). Then, following Marcon et al. (2016), for any fixed κ � 3, the prior
on (ηκ , κ), with ηκ = (η0, . . . , ηκ−1), is defined as

�(ηκ , κ) = �(η1, . . . , ηκ−2|p0, p1, κ)�(p1|κ, p0)�(p0)�(κ), (3.9)

where η0 = p0 and ηκ−1 = 1− p1 represent the point masses at the endpoints of the
simplex (H({0}) andH({1})),�(κ) = NegBin(κ−3|mNB, σNB)with meanmNB >

0 and variance σNB > 0, �(p0) = Unif(0, 1/2) and �(p1|κ, p0) = Unif(a, b) with
a = max{0, (κ − 1)p0 − κ/2+ 1} and b = (p0 − κ/2− 1)/(κ − 1). The conditional
prior distribution on the remaining parameters is set as

�(η1, . . . , ηκ−2|p0, p1, κ) = Unif(Dη),

where the domain Dη is a suitable set such that the elements of ηκ satisfy the
required conditions above specified (see Marcon et al. 2016, Section 3.2 for details).
Notice that, although the theory in Section 2.2 assumes models for which the con-
dition H({0}) = H({1}) = 0 holds, our proposed inferential method is capable of
estimating point masses at the vertices 0 and 1, if this exists.

Within the trans-dimensional MCMC update, the pair (η
(j)

κ(j) , κ
(j)) at time j is

updated through the proposal distribution

q(ηκ , κ|η(j)

κ(j) , κ
(j)) = qη(ηκ |κ)qκ(κ|κ(j))

where qη(ηκ |κ) = �(ηκ |κ) is the conditional prior implied by Eq. 3.9, and
qκ(κ|κ(j)) is defined such that if κ(j) = 3, it places mass on κ = 4 with probability 1
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and if κ(j) > 3 it places mass on κ(j) − 1 and κ(j) + 1 with equal probability. Using
qη(ηκ |κ) = �(ηκ |κ)means that these terms cancel in the between-model acceptance
probability, whether implemented under the ηκ or βκ parameterisation.

The full MCMC sampler is summarised in Algorithm 1, where L
(
θ1, θ2, κ, βκ

)
indicates the bivariate censored likelihood (3.8). Separate Robbins-Monro RWMH
updates are implemented for each set of marginal parameters θ i , i = 1, 2, and
the above scheme for the dependence parameter updates. See Marcon et al. (2016,
Section 3.2) for further details.
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4 Simulation experiments

4.1 Univariate

We generate n = 1500 observations from each of three distributions: Fréchet with
location, scale and shape parameters equals to ψ0 = 3, ς0 = 1 and ξ0 = 1/3,
respectively; Half-t with scale and degrees of freedom equal to σ0 = 1 and ν0 = 1/3;
Inverse Gamma with shape parameters equal to η0 = 1/2 and λ0 = 1. We recall
that Fr(y; ψ, ς, ξ) = exp(−((y − ψ)/ς)−ξ ), with y, ξ > 0, is the Fréchet family of
distributions with scale ς > 0 and location ψ < y parameters. These distributions
are in the domain of attraction of a GEV distribution with tail indices γ0 = 3, 3
and 2, respectively (Beirlant et al. 2004, Ch. 2). The univariate likelihood function
(3.1) is used, censoring observations below the 90-th empirical quantile. We specify
a prior distribution for θ as a product of uniform prior distributions on the real line for
μ, log(σ ) and γ , i.e. �(θ) ≡ �(μ, σ, γ ) := �(μ)�(log(σ ))�(γ ). This improper
prior distribution, with �(μ, σ, γ ) ∝ 1/σ with σ > 0, leads to a proper posterior
distribution (Northrop and Attalides 2016). We run the MCMC sampler for M =
50, 000 iterations for each dataset.

Each row in Fig. 1 shows the estimation results for each dataset: Fréchet (top),
Half-t (middle) and inverse Gamma (bottom). The columns on the left present trace
plots of the scaling parameter τ 2 (initialised at τ (0) = 1) and the sampler aver-
age acceptance probability. Through the Robbins-Monro process both quantities
converge rapidly, with the sampler acceptance rate effectively achieving the target
(“optimal”) acceptance rate of π∗ = 0.234 (solid horizontal line) after no more than
m = 30, 000 iterations, which we remove as sampler burn-in. The centre-right pan-
els illustrate histogram and kernel density estimates of the posterior distribution of
the tail index γ , with dashed and solid vertical lines indicating the posterior mean
and true value, respectively. The crosses along the horizontal axis show the lower and
upper bounds of the estimated 95% credibility interval. In each case the posterior for
γ puts most of its mass where the true value lies.

Finally, the rightmost panels display the estimated posterior densities of quantiles
corresponding to the exceedance probabilities p = 1/750 (light grey), 1/1500 and
1/3000 (dark grey), derived from Eq. 2.5. Vertical dashed and solid lines again repre-
sent the estimated posterior mean and true quantile values with the latter that are on
the log scale: 19.86, 21.94, 24.02 for the Fréchet; 18.73, 20.81, 22.89 for the Half-t ;
13.48, 14.87, 16.25 for the Inverse Gamma. The corresponding estimated central 95%
credible intervals are: (17.67, 22.73), (19.41, 25.36), (21.16, 27.95); (17.22, 22.38),
(18.93, 25.00), (20.68, 27.60) and (12.58, 16.58), (13.86, 18.58), (15.14, 20.57),
respectively. The points on the x-axis are the upper 5% of the observed dataset. As
the sample size is n = 1500, the largest value is a realisation of an event occur-
ring with probability 1/1500, corresponding to the second investigated quantile. For
example, on the log scale, the largest observation from the Fréchet distribution (top
row of Fig. 1) is 24.36. This means that the probability of observing an event taking
the value 24.36 or greater is less than 1/750, and is more likely to be an event with
probability closer to 1/3000.
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Fig. 1 Univariate extreme quantile region results for n = 1, 500 Fréchet (top row), Half-t (middle) and
inverse-Gamma (bottom) distributed data. Columns illustrate sampler scaling parameter τ 2 (left) and over-
all acceptance probability against sampler iteration (centre-left) with target sampler acceptance rate of
π∗ = 0.234 indicated by horizontal line. Centre-right column shows histogram and kernel density esti-
mates of tail index γ after removing m = 30, 000 iterations burn-in. Crosses are the lower and upper
bounds of the estimated 95% credibility interval. Right column illustrates log-scale posterior densities of
quantiles corresponding to the exceedance probabilities p = 1/750 (light grey), 1/1500 and 1/3000 (dark
grey). Posterior mean and true tail index are indicated by dashed and solid lines respectively, observed
data indicated by points on the x-axis

In all cases, the true tail indices and quantiles are always included inside the
estimated central 95% credible intervals, confirming the accuracy of our proposed
method for estimating such quantities. In Section 2 of the Supplementary Material
we investigate the sensitivity of the above results to variations in the experimental
setup. In particular we consider a higher censoring threshold (at the 95-th empirical
quantile) and alternative prior specifications for μ, σ, γ . Performance is qualitatively
similar to the above in each case.

4.2 Bivariate

Estimating and quantifying bivariate extreme quantile regions is more challenging
than the univariate setting. Here we examine data simulated from two distributions
defined on R

2+: the positive bivariate Cauchy and a positive truncated bivariate-t
density. The former has been previously considered in the literature (e.g. Einmahl
et al. 2013; Cai et al. 2011), and we consider the second one as an alternative flexible
model. Two further examples (the so-called Asymmetric and Clover densities) are
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investigated in the Supplementary Material (Section 3). As for the univariate setting,
we simulate n = 1500 observations from each density and marginally censor all
observations that fall below the corresponding 90-th marginal empirical quantile. We
are again interested in estimating quantile regions for events with probability p =
1/750, 1/1500 and 1/3000, corresponding to regions that contain very little or no
observed data. Details about the selected distributions are:

• Bivariate Cauchy distribution onR
2+: The Cauchy probability density function

is

f (x) = 2

π
(
1 + x2

1 + x2
2

)3/2 , x ∈ R
2+.

The Cauchy distribution is very heavy-tailed with tail indices γ1 = γ2 = 1, and

angular density h(w) = 2−1
(
w2 + (1 − w)2

)−3/2
. The angular basic density

function is q∗(w) = (
w2 + (1 − w)2

)1/2
and the associated basic set is

S =
{
x ∈ R

2+ : r >
(
w2 + (1 − w)2

)−1/2
, w ∈ [0, 1]

}
.

• Truncated bivariate-t distribution on R
2+: We consider a truncated two-

dimensional Student-t distribution with unit-variances, correlation 0 � ρ � 1
and ν > 0 degrees of freedom. The bivariate-t probability density function is

f (x) = t2,ν (x; ρ)

T2,ν (0; ρ)
, x ∈ R

2+,

where td,ν denotes the d-dimensional centred Student-t probability density func-
tion with correlation 0 � ρ � 1 and ν > 0 degrees of freedom, T2,ν is the
d-dimensional centred Student-t distribution function, and 0 = (0, 0)�. The tail
indices are γ1 = γ2 = 1/ν and vary with the degree of freedom and the angular
density is

h(w) = 1

2νw3

√
ν + 1

1 − ρ2

(
1 − w

w

) 1−ν
ν

t1,ν+1

(√
ν+1
1−ρ2

((
1−w
w

) 1
ν − ρ

))

1 − T1,ν+1

(
−ρ

√
ν+1
1−ρ2

) .

The angular basic density is equal to

q∗(w) =

⎛
⎜⎜⎜⎝νw−(1+2/ν)

√
ν + 1

1 − ρ2

t1,ν+1

(√
ν+1
1−ρ2

((
1−w
w

) 1
ν − ρ

))

1 − T1,ν+1

(
−ρ

√
ν+1
1−ρ2

)

⎞
⎟⎟⎟⎠

− ν
ν+2

,

and the associated basic set is

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ R
2+ : r >

⎛
⎜⎜⎝

ν

w1+ 2
ν

√
ν + 1

1−ρ2

t1,ν+1

(√
ν+1
1−ρ2

(
(1−w)

1
ν

w
1
ν

−ρ

))

1 − T1,ν+1

(
−ρ

√
ν+1
1−ρ2

)

⎞
⎟⎟⎠

ν
ν+2

, w∈[0, 1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.
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Details concerning the derivation of the angular density are available in
Appendix. It is well known that a bivariate-t distribution defined on R

2 is in
the domain of attraction of the Extremal-t model (see e.g. Beranger and Padoan
2015). The angular distribution corresponding to this model places mass on
all the subsets of the unit simplex, which in the bivariate case corresponds to
the interval (0, 1) and the vertices {0} and {1}. However, when considering a
truncated bivariate-t distribution defined on R

2+, it can be shown that the corre-
sponding angular distribution does not put mass at the endpoints, i.e. H({0}) =
H({1}) = 0 (see Appendix). Note that when ν = 1 and ρ = 0 the truncated
bivariate-t distribution reduces to the bivariate Cauchy on R2+.

As before, we specify a uniform prior distribution �(μi, σi, γi) for each margin
i = 1, 2. As the dependence structures for the above models are known to be smooth
(see solid lines in the top left panels of Figs. 2–3), it is expected they can be well
modelled through relatively low degree polynomials. Hence we set the prior distri-
bution for the polynomial degree as �(κ) = NegBin(mNB = 3.2, σNB = 4.48).
Even though the selected models do not permit mass in the corners of the simplex
(i.e. H({0}) = H({1}) = 0), in the analysis we still allow for the possibility of non-
zero point masses at the endpoints of the simplex by specifying �(p0) = �(p1) =
Unif(0, 0.1). This prior is slightly different to those in Marcon et al. (2016) to bet-
ter represent our prior belief that p0 and p1 are likely to be small for these data. See
Marcon et al. (2016) for an analysis of alternative prior specifications.

Fig. 2 Extreme quantile analysis for the Cauchy distribution. True (solid lines), posterior mean estimate
(dotted) and 90% credible regions (grey) for the inverse of the angular basic density (top left), the basic
set S (top middle), and the quantiles with probability p = 1/750, 1/1500 and 1/3000 (bottom left to
bottom right). Dashed lines in bottom panels shows the EdHK point estimator. Top right panel illustrates
the simulated dataset (points) and true and posterior mean estimated quantiles
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Fig. 3 Extreme quantile analysis for the bivariate-t distribution with ν0 = 2 degrees of freedom and
correlation ρ0 = 0.5. True (solid lines), posterior mean estimate (dotted) and 90% credible regions (grey)
for the inverse of the angular basic density (top left), the basic set S (top middle), and the quantiles with
probability p = 1/750, 1/1500 and 1/3000 (bottom left to bottom right). Dashed lines in bottom panels
shows the EdHK point estimator. Top right panel illustrates the simulated dataset (points) and true and
posterior mean estimated quantiles

We run Algorithm 1 for M = 50, 000 iterations and determine the burn-in period
m by visual inspection of trace plots of the marginal scaling parameters τ1, τ2 and
the overall acceptance rates of the marginal (π∗

i = 0.234, i = 1, 2) and dependence
proposals.

For each draw from the posterior distribution, we can construct the angular density
hκ−1(w; η) using Eq. 3.7, combine this with the marginal shape indices γ1, γ2 into
q(w) Eq. 2.11, and compute the angular basic density q∗(w) (see Section 2.2 for
details). Hence, for each fixed w ∈ (0, 1), we obtain samples from the posterior of
the angular basic density q∗(w). Its inverse q−1∗ (w) and pointwise central credible
intervals are shown in the top-left panels of Figs. 2–3.

The boundary of the basic set S corresponds to those points (x, y) ∈ (0, ∞)2

such that x + y = q−1∗ (w), i.e. the points
(
wq−1∗ (w), (1 − w)q−1∗ (w)

)
. For fixed

w ∈ (0, 1), the posterior distribution of this boundary is available, from which we
may calculate the posterior mean and 90% central credible intervals. Computed over
all w ∈ (0, 1) the (pointwise) posterior mean and credible intervals for the basic set
are illustrated in the top-centre panels of Figs. 2–3.

To construct the extreme quantile regions for a given small probability p

(top-right panel and bottom row of Figs. 2–3), consider a point w ∈ (0, 1).
As before, we may construct the posterior distribution of the points (x, y) =(
wq−1∗ (w), (1 − w)q−1∗ (w)

) ∈ R
2+ with angle w and radial component q−1∗ (w), as
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an estimate of a point on the boundary of S. For each (x, y) point in this posterior,
we may compute the quantile Q̃n associated with probability p via Eq. 2.13, leading
to a posterior distribution approximating the 1−p bivariate quantile level at a partic-
ular (estimated) point in S. We then use the marginal 0.05 and 0.95 quantiles of this
bivariate posterior to define an approximate 90% credible region, and the marginal
posterior means to produce a mean estimate. This procedure is repeated for other
w ∈ (0, 1).

The top right panel in Figs. 2–3 provides a comparison between the true extreme
quantile region (solid line) and the posterior mean estimate (dotted line), for p =
1/750, 1/1500 and 1/3000, with the observed data (points) overlaid. The bottom
panels in each figure illustrate each extreme quantile region separately, but with the
estimated 90% pointwise credible regions and the point estimates of the quantile
regions given in Einmahl et al. (2013) (dotted lines) are included for comparison. We
refer to the latter as the EdHK estimator.

Figure 2 illustrates the results for the Bivariate Cauchy distribution. The estimated
(pointwise posterior mean) inverse angular basic density q−1∗ (w) (dotted line; top-
right panel) describes the behaviour of the true function (solid line) well, and is
fully included in the (pointwise) estimted 90% credible regions. The curvature in
the dependence structure around w = 0.5 is not as pronounced as the true q−1∗ (w),
which consequently impacts on the estimated basic set and extreme quantile regions.
The bottom panels show that the mean extreme quantile levels (dotted) line are close
to the true levels (solid line) and provide a similar fit to the EdHK point estimate
(dashed) for each probability p = 1/750, 1/1500 and 1/3000. In addition all three
curves consistently appear in the centre of the 90% credible regions.

Finally, Fig. 3 presents analysis for the truncated bivariate-t distribution. The
dependence structure q−1∗ (w) is very accurately estimated within the interior of the
simplex, although towards the endpoints the estimated q−1∗ (w) appears to approach
0 whereas the true value is approximately 1. Producing quantile regions that seem
drawn to the origin for low values of either component, may at first appear erroneous.
However, inspection of the simulated dataset (top-right panel) reveals that there are
no extreme observations that lie along the axes, thereby explaining the behaviour of
our estimator. On balance, the estimated posterior means follow the general shape
of the true quantile regions and provide similar results than the competitor EdH esti-
mates (dashed lines). The true quantile regions are amply included in the (pointwise)
estimated 90% credible regions.

Overall, the proposed methodology is able to accurately estimate both marginal
and dependence structure of process extremes. As a point estimator, the posterior
mean of the extreme quantile region performs well in recovering the true region,
while being responsive to the dependence structure within the data itself, as with the
bivariate-t data analysis (Fig. 3). It also seems to perform more consistently than the
EdHK estimator (e.g. Figs. 5 and 6 of the Supplementary Material). The credible
regions both provide some measure of the uncertainty inherent with low probabil-
ity events, while also allowing for judgements regarding whether exceptionally high
observations can still be considered to belong to events with particular probabilities
(e.g. whether the single large outlier in Fig. 3 can be considered a 1/1500 or 1/3000
probability event).
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5 Analysis of extreme air pollution levels in Milan

Understanding the extremes of air pollutants is of critical importance, especially
in the context of climate change (De Sario et al. 2013). In recent work, Martins
et al. (2017) used standard univariate extreme value theory to compare the air qual-
ity between the two largest urban regions in Brazil, Heffernan and Tawn (2004)
and Beranger and Padoan (2015) estimated the extremal dependence between pollu-
tants in Leeds, U.K., Coles and Pan (1996) studied the extreme temporal behaviour
of airborne NO2 particles in Milan between 1984–1994, and Vettori et al. (2018)
performed a spatial analysis of air pollution in Los Angeles, U.S.A.

Here we study extreme air pollution levels recorded in Milan, Italy, over the winter
period October 31st–February 27/28th, between December 31st 2001 and December
30th 2017. We examine the daily mean level of PM10 and daily maximum lev-
els of NO, NO2 and SO2. These data were also considered by Falk et al. (2019,
Table 3) although there the objective was estimating joint exceedance probabilities
(with excesses in all variables).

Here, the aim is to estimate bivariate extreme quantile regions given by a high
concentration of the two pollutants and with a small probability of occurrence. This
analysis is important for understanding the long term impact of air quality on health.
When modelling univariate extremes it is common to express marginal parameters
via a regression model which may be functions of space or other covariates (Padoan
et al. 2010). For air pollution in particular, evidence is overwhelming that interactions
between the pollution and temperatures cannot be disregarded (De Sario et al. 2013;
Cheng and Kan 2012; Katsouyanni et al. 1993; Roberts 2004). The leftmost panels
of Fig. 4 show scatterplots of each pollutant against the daily maximum temperature.
All four indicate a possible quadratic relationship between pollutant and maximum
temperature, and so we write the i-th marginal mean μi = β0,i + β1,iz + β2,iz

2 as a
quadratic function of the maximum temperature z. Other covariates could have been
included if they were available, and regressions on σi and γi constructed, although we
did not pursue that here. For observations that fall below the threshold (black points
in left panels of Fig. 4), as these observation are censored it could be argued that the
level of the covariates at the threshold should be used when evaluating the likelihood
contribution. This would beneficially reduce computational costs. However, as the
covariates are still available for censored observations, they still provide valuable
information to estimate the regression coefficients.

Using mean residual life plots (e.g. Beirlant et al. 2004, Section 1.2.2) we set
the marginal 90-th empirical quantile as the threshold (points above the threshold
are blue in Fig. 4), which results in t = 642.9 (n = 1796) for NO, t = 139.5
(n = 1799) for NO2, t = 108 (n = 1779) for PM10 and t = 45.2 (n = 1809) for
SO2. These thresholds are comparable with those in Falk et al. (2019, Table 3). We
specify all marginal prior distributions �(μi, σi, γi) ∝ 1/σi , for i = 1, . . . , 4 as
in Section 4.1, and dependence parameter prior distributions as in Section 3.2 with
�(κ) = NegBin(κ = 3|mNB = 6, σNB = 8) to allow for higher degree polynomial
modelling of hκ−1(w; η) if required. For the univariate analysis we implement an
MCMC sampler with 300k iterations and retain the final 50k iterations for inference;
for the multivariate analysis we retain the final 20k iterations from a chain of length
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Fig. 4 Univariate analyses of (top row to bottom row) NO, NO2, PM10 and SO2 data relative to the
maximum daily temperatures (x-axes). Left column: Scatterplots of each pollutant versus maximum daily
temperature, with observations above the threshold shown in blue. Second to fourth columns: Image plots
of the univariate distribution of quantiles associated with probability p = 1/600, 1/1200 and 1/2400 as a
function of maximum daily temperature

50k. The univariate sampler ran in under 1 hour on a single-core 2.2 GHz Intel Core
i7 processor on a MacBook Pro; the multivariate sampler took around 2.5 hours.

The image plots in Fig. 4 illustrate the (univariate) posterior distribution of the
quantiles associated with the probabilities p = 1/600, 1/1200 and 1/2400 (left to
right) as a function of the maximum daily temperature, which correspond to pollu-
tant levels that would be expected to be reached once every 5, 10 and 20 winters.
Restricting our interpretation to the range of observed temperature, we note that
extreme PM10 quantiles (third row) appear higher for lower temperatures rather than
high. Indeed, the main sources of PM10 pollution include combustion engines (both
diesel and petrol) and combustion for energy production in households. Accordingly,
when maximum temperatures are low, one may expect household heating systems
to work at higher capacity and an increase in the use of cars rather than less energy
consumptive transport methods such as walking or cycling.

Extreme quantile behaviour for NO2 (second row) as function of maximum tem-
perature appears similar to PM10 although the larger range of the quantiles (y-axis)
reduces the visual curvature. This behaviour can be explained by the fact that nitrogen
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dioxide, mainly emitted by power generation, industrial and traffic sources, is an
important constituent of particulate matter. Sulfur dioxide (fourth row) forms either
naturally (decomposition or combustion of organic matter) or due to human activ-
ity (smelting sulfur-containing mineral ores). Accordingly, it is not surprising to
observe decreasing extreme SO2 quantiles across temperature levels (fourth row) as
maximum temperature moves from 0 to 20◦C. The decreasing quantile behaviour
as temperature gets cold might be due to a reduction in human activity. The poste-
rior mean of the tail indices γNO, γNO2, γPM10 and γSO2 and their corresponding 90%
credible interval are 0.050 (0.003, 0.138), 0.186 (0.055, 0.337), 0.054 (0.004, 0.148)
and 0.064 (0.005, 0.167) respectively.

To date, the link between extreme levels of multiple pollutants and human health
has not been well explored, although a multi-pollutant approach to assess the health
risks associated with air pollution has been emerging (e.g. Dominici et al. 2010;
Wesson et al., 2010). In the following we restrict our attention to the three pollutants
with the largest tail indices: NO2, SO2 and PM10.

Figure 6 shows information regarding extremal dependence between the three
pollutant pairs: NO2/SO2, NO2/PM10 and SO2/PM10. The estimated basic sets
demonstrate weak dependence between the pairs NO2/SO2 and SO2/PM10 and
stronger dependence between NO2 and PM10. Further, from the pairwise scatterplots
it is apparent that neither the coldest (blue dots) nor the warmest (red dots) daily
maximum temperatures appear to induce the largest pollutant levels. As discussed
above, NO2 is a key constituent of PM10 and so it is realistic to expect the observed
strong dependence between these pollutants. Similarly, the sources of PM10 (com-
bustion engines) and SO2 (natural or smelting mineral ores) differ, explaining the
independence between the extremes of these pollutants to some extent.

Figure 5 illustrates extreme quantiles regions corresponding to events that
would expect to occur once every 5, 10 and 20 winters (left to right pan-
els) when the daily maximum temperature is fixed to the minimum, median
and maximum observed daily maximum temperatures (blue to red shading).
These values are (−6.3 ◦C, 8.6 ◦C, 22.2 ◦C), (−5.1 ◦C, 8.6 ◦C, 22.2 ◦C) and
(−5.1 ◦C, 8.7 ◦C, 22.2 ◦C) for the pairs NO2/SO2, NO2/PM10 and SO2/PM10 respec-
tively. The top panels of Fig. 5 exhibit a small quadratic influence of maximum daily
temperature on the joint levels of NO2 and SO2, and similarly for SO2 and PM10
(bottom row). It is apparent that extreme levels of SO2 are reduced with warmer
weather. This phenomena can be loosely understood by the fact that sulfur dioxide
is an aerosol which cools the planet by reflecting some of the sun’s energy back into
space. As such, large levels of SO2 are more likely to be associated with cold tem-
peratures. Overall the estimated extreme quantile regions capture the behaviour of
the data well, with the NO2/PM10 pair exhibiting the strongest level of dependence.
As expected, as the probability p of an event decreases the quantile regions become
larger and reach higher pollutant levels. Despite having observations for 17 consec-
utive winters, our method is able to provide quantile levels and credible regions for
events with probability of occurrence p at arbitrarily low levels.

In terms of the pollutant thresholds suggested by European emission regulation,
the top-left panel of Fig. 5 shows that when the the daily maximum temperature is
fixed to the maximum, we expect that NO2 individually exceeds approximatively
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Fig. 5 Posterior mean estimates (solid line) and 90% credible regions for the extreme bivariate quantiles
associated with the probabilities p = 1/600, 1/1200 and 1/2400 (left to right) for three maximum daily
temperature levels: minimum temperature = blue, median temperature = purple, maximum temperature =
red

200 μg/m3 (i.e. the short-term limit threshold) once every 5 winters (p = 1/600)
on average. However, this event is as equally probable as the joint event that both
NO2 and PM10 each exceed approximatively 200 μg/m3. Such a concentration for
PM10 is four times higher than the individual limit threshold for this pollutant (see
Section 1). Similarly, for the bottom-left panel of Fig. 5, when the daily maximum
temperature is fixed to the median temperature, we expect that PM10 individually
exceeds approximatively 200 μg/m3 on average once every 5 winters. However, this
event is as equally probable as the joint event that both SO2 and PM10 each exceed
approximatively 200 μg/m3. This concentration for SO2 is almost twice the individ-
ual limit threshold for this pollutant (see Section 1). These results indicate both the
strong dependence between harmful pollutants at extreme levels in Milan, and that
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Fig. 6 Posterior mean estimate (dotted line) and 90% credible regions (grey) for the inverse of the angular
basic density (left column), the basic set S (middle column), and and observed data (right column) with
temperature dependent data colouring (from cold = blue to warm = red). Top to bottom: The pairs of
pollutants shown are NO2/SO2, NO2/PM10 and SO2/PM10

limit threshold alerts for poor air quality in this city are likely to be issued for multiple
pollutants simultaneously.

6 Discussion

We have presented a new method for estimating extreme quantile regions that is
responsive to varying levels of extremal dependence, and comes with natural mea-
sures of uncertainty, both for model parameters and extreme quantile regions, under
the Bayesian paradigm. The method was able to outperform the existing (EdHK)
approach of Einmahl et al. (2013) which does not provide any measure of uncertainty.
This methodology provides a useful general tool for long-term analysis of the air
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pollution at the extreme level. We explored this in Section 5 for assessing and quanti-
fying the health risks associated with multiple extreme pollutant exposures (Dominici
et al. 2010; Wesson et al. 2010).

The methods developed in this paper have been incorporated into accessible
functions in the R Package ExtremalDep. This package is freely available from
the CRAN repository, see https://CRAN.R-project.org/package=ExtremalDep. The
R code for the simulations and the multivariate analysis of real air pollution data is
available online at the address https://www.borisberanger.com/zip/BPS 2019.zip.

Acknowledgements The authors are grateful to Andrea Krajina for sharing the code for the frequentist
estimation of bivariate extreme quantile regions and her valuable suggestions and help. SAP is sup-
ported by the Bocconi Institute for Data Science and Analytics (BIDSA), Italy and PRIN 2015 research
grant Modern Bayesian Nonparametric Methods. SAS and BB are supported by the Australian Centre
of Excellence for Mathematical and Statistical Frontiers (ACEMS; CE140100049) and the Australian
Research Council Discovery Project scheme (FT170100079). The authors are also indebted to the Asso-
ciate Editor and two anonymous reviewers for their careful reading of the manuscript and their constructive
remarks

Appendix: The Extremal-tmodel with restriction to the positive
reals

Consider a student-t distribution restricted to (0, ∞). Using Beirlant et al. (2004,
p.59) the norming constants required in Eq. 2.1 are

an = n1/ν

(
2�

(
ν+1
2

)
ν

ν
2 −1

√
π�( ν

2 )

)1/ν

and bn = 0.

Applying the conditional tail dependence function framework of Nikoloulopoulos
et al. (2009), the exponent function can be written as:

V (x, y) = lim
n→∞ x−ν

P (Z2 � any|Z1 � anx) + y−ν
P (Z1 � anx|Z2 � any) ,

where (Z1, Z2)
� follows a centred bivariate-t distribution on (0, ∞)2 with unit

variance, correlation ρ and degree of freedom ν. The conditional distribution of
Z2|Z1 = z1 is a truncated t distribution on (0, ∞) with mean ρz1, variance
(ν + z21)(1 − ρ2)/(ν + 1) and ν + 1 degrees of freedom. As a consequence, we
obtain

P (Z2�any|Z1�anx)=
T1,ν+1
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ν+1
1−ρ2
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ν+a2nx2
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(
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√
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) ,

and

lim
n→∞P (Z2 � any|Z1 � anx) =
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( y
x

− ρ
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Identical calculations can be applied to the second term in the exponent function.
Transforming the margins to unit-Fréchet margins allows expression of the exponent
function as

V (x, y) = 1

1 − T1,ν+1

(
−ρ

√
ν+1
1−ρ2

)

×
{
1

x

[
T1,ν+1

(√
ν + 1

1 − ρ2

(y

x
− ρ

))
− T1,ν+1

(
−ρ

√
ν + 1

1 − ρ2

)]

+1

y

[
T1,ν+1

(√
ν + 1

1 − ρ2

(
x

y
− ρ

))
− T1,ν+1

(
−ρ

√
ν + 1

1 − ρ2

)]}
.

It is easy to verify that limy→0 ∂/∂xV (x, y) = 0 and limx→0 ∂/∂yV (x, y) = 0
which implies H({0}) = H({1}) = 0. Finally, note that due to the form of V (x, y),
taking the double partial derivative with respect to x and y is equivalent to the double
partial derivative of the exponent function of the Extremal-t model multiplied by
a scaling term. Hence the angular density on the interior of the 2-dimensional unit
simplex is as given.
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