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Abstract
There is a growing need for flexible methods to analyze
interval-valued data, which can provide efficient data rep-
resentations for very large data sets. However, the existing
descriptive frameworks to achieve this ignore the process
by which interval-valued data are typically constructed,
namely, by the aggregation of real-valued data generated
from some underlying process. In this paper, we develop
the foundations of likelihood-based statistical inference for
intervals that directly incorporates the underlying data gen-
erating procedure into the analysis. That is, it permits the
direct fitting of models for the underlying real-valued data
given only the interval-valued summaries. This genera-
tive approach overcomes several problems associated with
existing methods, including the rarely satisfied assumption
of within-interval uniformity. The new methods are illus-
trated by simulated and real data analyses.

KEYWORDS

aggregate data, interval-valued data, likelihood theory, symbolic data
analysis

1 INTRODUCTION

As we move inevitably toward a more data-centric society, there is a growing need for the
ability to analyze data that are constructed in nonstandard forms, rather than represented as
continuous points in Rp (Billard & Diday, 2003). The simplest and most popular of these is
interval-valued data.

Interval-valued observations can arise naturally through the data recording process and essen-
tially result as a way to characterize the measurement error or uncertainty of an observation.
Examples include blood pressure, which is typically reported as an interval due to the inher-
ent continual changes within an individual (Billard & Diday, 2006); data quantization, such as
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rounding or truncation, which results in observations being known to lie within some interval
(McLachlan & Jones, 1988; Vardeman & Lee, 2005); and the expression of expert-elicited inter-
vals that contain some quantity of interest (Lin, Caley, & Sisson, 2017; Fisher et al., 2015), among
others.

The use of intervals as a summary representation of a collection of classical real-valued data is
also rapidly gaining traction. Here, the aggregation of a large and complex data set into a smaller
collection of suitably constructed intervals can enable a statistical analysis that would otherwise
be computationally unviable (Billard & Diday, 2003). Where interest in the outcome of an analysis
exists at the level of a group, rather than at an individual level, interval-valued data provide a
convenient group-level aggregation device (Neto & de Carvalho, 2010; Noirhomme-Fraiture &
Brito, 2011). Similarly, aggregation of individual observations within an interval structure allows
for some preservation of privacy for the individual (Domingues, de Souza, & Cysneiros, 2010).

The earliest systematic study of interval-valued data is in numerical analysis, where
Moore (1966) used intervals as a description for imprecise data. Random intervals are also special
cases of random sets (Molchanov, 2005), the theory of which brings together elements of topol-
ogy, convex geometry, and probability theory to develop a coherent mathematical framework for
their analysis. Matheron (1975) gave the first self-contained development of statistical models for
random sets, including central limit theorems and the law of large numbers, and Beresteanu and
Molinari (2008) derived these limit theorems specifically for random intervals. In this framework,
interval-valued random variables [X] = [X ,X] ⊂ R are modeled as a bivariate real-valued random
vector (X ,X), where X ≤ X , using standard inferential techniques. This approach is also used for
partially identified models, where the object of economic and statistical interest is a set rather than
a point (Beresteanu, Molchanov, & Molinari, 2012; Molchanov & Molinari, 2014). In probabilistic
modeling, Lyashenko (1983) introduced normal random compact convex sets in Euclidean space
and showed that a normal random interval is simply a Gaussian displacement of a fixed closed
bounded interval. Sun and Ralescu (2015) subsequently extended this idea to normal hierarchical
models for random intervals.

A more popular framework for the analysis of interval-valued data, and one which we focus
on here, is symbolic data analysis (Billard & Diday, 2006). Symbols can be considered as distribu-
tions of real-valued data points inRp, such as intervals and histograms, or more general structures
including lists. They are typically constructed as the aggregation into summary form of real-valued
data within some group, and so, the symbol is interpreted as taking values as described by the
summary distribution. As a result, symbols have internal variations and structures that do not
exist in real-valued data, and methods for analyzing them must account for within-symbol varia-
tion in addition to between-symbol variation. In practice, the most common form of symbol is the
interval or its p-dimensional extension, the p-hyper-rectangle. See Billard and Diday (2003, 2006)
and Noirhomme-Fraiture and Brito (2011) for a review of recent results.

While many exploratory and descriptive data analysis techniques for symbolic data have been
developed (see, e.g., Billard & Diday, 2006 for an overview), there is paucity of results for devel-
oping a robust statistical inferential framework for these data. The most significant of these
(Le-Rademacher & Billard, 2011) maps the parameterization of the symbol into a real-valued
random vector and then uses the standard likelihood framework to specify a suitable model.
In the random interval setting, this is equivalent to the random set theory approach, which models
the interval-valued random variables [X] = [X ,X] ⊂ R by the constrained real-valued ran-
dom vector (X ,X) ∈ R2 or, more commonly, a reparameterization to the unconstrained interval
center and half-range (Xc,Xr) = ((X + X)∕2, (X − X)∕2), which is then more easily modeled,
for example, (Xc, log Xr) ∼ N2(𝜇,Σ). This likelihood framework has been used for analysis of
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variance (Brito & Duarte Silva, 2012), time-series forecasting (Arroyo, Espínola, & Maté, 2011),
and interval-based regression models (Xu, 2010), among others.

While sensible, by nature, the above methods for modeling real-valued random variables only
permit descriptive modeling at the level of the real-valued random vector (X ,X) (or its equivalent
for p-hyper-rectangles). However, this descriptive approach completely ignores the data generat-
ing procedure commonly assumed and implemented for the construction of observed intervals,
namely, that the underlying real-valued data are produced from some data generating model
X1, … ,Xm ∼ f (x1, … , xm | 𝛼), and the interval is then constructed via some aggregation process,
for example, X = min{Xk} and X = max{Xk}. If interest is then in fitting the underlying data
generating model f (x1, … , xm | 𝛼) for inferential or predictive purposes, while only observing
interval-valued data rather than the underlying real-valued data set, or in having the interpre-
tation of model parameters be independent of the form of the interval construction process,
then the above descriptive models will be inadequate. Furthermore, the existing descriptive mod-
els for random intervals typically assume that the distribution of latent data points within the
interval is uniform. Under the above data generating procedure, except in specific cases, this will
almost always be untrue. This assumption is generally accepted as false in practice, but is typically
ignored.

In this paper, we develop the methodological foundations of statistical models for interval-
valued data that are directly constructed from an assumed underlying data generating model
f(x1, … , xm | 𝛼) and a data aggregation function 𝜑(·) that maps the space of real-valued data to the
space of intervals.

To the best of our knowledge, this represents the first attempt to move beyond the restrictive
descriptive models, which are prevalent in the literature, and provide an inferential framework
that aligns with the generative interval construction process that is typical in practice. In addition
to providing more directly interpretable parameters, it also provides a natural mechanism for
departure from the uncomfortable uniformity-within-intervals assumption of descriptive models.

In Section 2, after establishing the containment distribution function, F[X](·), for random inter-
vals [X] based on the idea of containment functionals (Molchanov, 2005), we demonstrate the
one-to-one mapping between F[X](·) and f[X](·), which is the density function of the bivariate
real-valued random vector (X ,X), thereby lending some support to the current best practice for
modeling random intervals. All proofs are provided in the Appendix. In Section 3, these results
naturally lead to the construction of likelihood functions for generative models that are directly
constructed from likelihood functions for the underlying real-valued data. We demonstrate the
recovery of existing results on the distribution of the order statistics of a random sample under
certain conditions. We are also able to show that a limiting case of the derived generative models
results in a valid descriptive model in the sense of Le-Rademacher and Billard (2011), implying
that existing descriptive models, in fact, have a direct interpretation in terms of an underlying
generative model.

All results are naturally extended from intervals to p-hyper-rectangles in Section 4.
In Section 5, we contrast the performance of generative and descriptive models for interval-valued
random variables on both simulated data and for a reanalysis of a credit card data set previ-
ously examined by Brito and Duarte Silva (2012). Here, we establish that the use of existing
descriptive models to analyze interval-valued data constructed under a data generating process
(which is typical in practice) can result in misinterpretable and biased parameter estimates and
poorer overall fits to the observed interval-valued data than those obtained under generative mod-
els. We also examine the robustness of the generative model to model and aggregation function
mis-specification. Finally, we conclude with a discussion.
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2 DISTRIBUTIONS OF RANDOM INTERVALS

We first investigate the distribution for a random (closed) interval [X] = [X ,X] defined on the
space of I = {[x, 𝑦] ∶ −∞ < x ≤ 𝑦 < +∞}. The current practice of constructing models for
[X] is by constructing models for the two real-valued random variables X and X with X ≤ X
(Le-Rademacher & Billard, 2011). We term this approach the descriptive model.

Throughout this paper, we only consider closed intervals (hyper-rectangles). Results for other
types of intervals (hyper-rectangles) can be obtained in a similar way. We denote a vector of
m < ∞ real-valued random variables by X1∶m = (X1, … ,Xm)′, where Xk ∈ R for k = 1, … ,m,
and xk is a realization of Xk. We can then define a data aggregation function𝜑 ∶ Rm → I that maps
a vector X1:m to the space of intervals I via [X] = 𝜑(X1:m), so that [X] is a random (closed) interval.
For example, a useful specification for random intervals might construct the bivariate real-valued
random variable (X ,X) from the minimum (X) and maximum (X) of the components of X1:m.

2.1 Descriptive models
A descriptive model treats [X] = [X ,X] as a bivariate real-valued random variable (X ,X) with
X ≤ X . We write 𝑓[X](x, x | 𝛼) = 𝑓 (x, x | 𝛼) as the likelihood function of (X ,X), where 𝑓 (x, x | 𝛼)
is a valid density function and 𝛼 denotes the parameter vector of interest. Rather than construct
models directly on (X ,X) with the awkward constraint X ≤ X , a simpler approach is to remove

this constraint through reparameterization. For example, defining the interval center Xc = X+X
2

and half-range Xr =
X−X

2
, we obtain 𝑓[X](x, x | 𝛼) = 1

2
g( x+x

2
,

x−x
2
| 𝛼), where g (xc, xr | 𝛼) is a density

function for Xc and Xr.
Most existing methods to model random intervals (e.g., Arroyo et al., 2011; Le-Rademacher &

Billard, 2011; Brito & Duarte Silva, 2012) can be classified as descriptive models. Their interpre-
tation is simple, and they are convenient to use. However, by construction, they are only models
for interval endpoints and, as a consequence, have limitations in providing information about the
distribution of the latent data points X1:m.

In both symbolic data analysis (Billard & Diday, 2006) and theory of random sets
(Molchanov, 2005), the distribution of [X] can be uniquely identified by a density function for
bivariate real-valued random variables, that is, 𝑓 (x, x) with x ≤ x.

2.2 Containment distribution functions
In the theory of random sets, two types of functionals, the capacity functional and the con-
tainment functional, are commonly used to identify a unique distribution for random sets.
For random intervals, the capacity functional and the containment functional are T[X]([x]) =
P([X] ∩ [x]) and C⋆

[X]([x]) = P([X] ⊂ [x]), respectively.
In the present setting, we consider a variant of the containment functional, C[X]([x]) =

P([X] ⊆ [x]), which is more convenient for model construction. Due to its similarity to C⋆
[X](·)

in both functionality and interpretation, we still refer to C[X](·) as the containment functional
throughout this paper.

Similar to C⋆
[X](·), a containment functional of a random interval [X] is a functional C[X] ∶ I →

[0, 1] having the following properties:

(i) C[X]([x, x]) → 1, when x → −∞ and x → +∞;
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(ii) if [x1] ⊇ [x2] ⊇ · · · ⊇ [xn] ⊇ · · · and ∩∞
n=1[xn] ∈ I, then

lim
n→∞

C[X]([xn]) = C[X]
(
∩∞

n=1[xn]
)
;

(iii) for any [x] ⊆ [y], C[X]([x]) ≤ C[X]([y]) and

C[X]([𝑦]) − C[X]

([
𝑦, x

])
− C[X]

([
x, 𝑦

])
+ C[X]([x]) ≥ 0.

However, it is more convenient to work with functions defined on the real plane; hence,
we equivalently define the containment distribution function as F[X](x, x) = C[X]([x]).

Definition 1. The containment distribution function F[X] ∶ R2 → [0, 1] of the random
interval [X] has the following properties:

(i) F[X]( −∞, +∞) = 1 and F[X](x, x) = 0 when x > x;
(ii) F[X](x, x) is left-continuous in x and right-continuous in x;

(iii) F[X](x, x) is nonincreasing in x and nondecreasing in x;
(iv) for 𝑦 ≤ x ≤ x ≤ 𝑦, F[X](𝑦, 𝑦) − F[X](𝑦, x) − F[X](x, 𝑦) + F[X](x, x) ≥ 0.

The containment distribution function of [X] can be obtained by integration of a valid density
function for random intervals.

Theorem 1. Provided that 𝑓[X] ∶ R2 → R is the density function of a random interval [X], the
containment distribution function of [X] can be derived as F[X](x, x) = ∫ x

x ∫ x
x 𝑓[X](x′, x′)dx′dx′.

Conversely, the density function of [X] can be obtained by differentiation of a containment
distribution function.

Theorem 2. Let F[X] ∶ R2 → [0,1] be the containment distribution function of a random
interval [X]. If F[X](·) is twice differentiable, then the density function of [X] is

𝑓[X]
(

x, x
)
= − 𝜕2

𝜕x𝜕x
F[X]

(
x, x

)
. (1)

Given the data generating process, F[X](x, x) can be naturally constructed from the gener-
ative framework, where [X] = 𝜑(X1:m), by noting that the two events, {𝜑(X1:m) ⊆ [x]} and
{[X] ⊆ [x]}, are equal. If 𝜑 is measurable, we may compute the probability of {[X] ⊆ [x]} via
P(𝜑(X1:m) ⊆ [x]), given the distribution of latent data points X1:m. Accordingly, the containment
distribution function of [X] can be constructed as

F[X]
(

x, x
)
= P(𝜑(X1∶m) ⊆ [x]). (2)

Note that [X] degenerates to a scalar random variable when it only contains a single point,
that is, when X = X = X , and so, P([X] ⊆ [x]) = P(X ∈ [x]) identifies the distribution of
a univariate real-valued random variable. In the generative framework, a univariate real-valued
random variable is produced either when m = 1 or when X1 = · · · = Xm = X for m > 1.
Accordingly, this theory for random intervals is consistent with standard statistical theory. For the
following sections, we assume that the data aggregation function 𝜑(·) is always measurable.

2.3 Density functions
We can formally establish the distribution of random intervals by constructing a measurable
space of I.

Theorem 3. The containment distribution function F[X] determines a unique distribution of
[X], such that P([X] ⊆ [x]) = F[X](x, x) for all [x] ∈ I.
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6 Scandinavian Journal of Statistics ZHANG ET AL.

From the above, 1 − F[X](x,+∞) and F[X](−∞, x) are the marginal cumulative distribution
functions of the lower bound X and the upper bound X , respectively.

The density function of [X] is formally defined as the Radon–Nikodym derivative
(Durrett, 2010) of a probability measure on I over the uniform measure as the reference measure,
as described in Theorem 2.

Note that a valid density function of [X] is also a density function for a bivariate real-valued
random variable. Being able to express the density function 𝑓[X](x, x) of the random interval
[X] as the joint density of two real-valued random variables, X and X , justifies those existing
(descriptive) methods for modeling random intervals (e.g., Arroyo et al., 2011; Le-Rademacher
and Billard, 2011; Brito & Duarte Silva, 2012—see Section 2.1) that directly specify a joint distri-
bution for X ,X | X ≤ X , or some reparameterization that circumvents bounding the parameter
space.

3 GENERATIVE MODELS

One approach for constructing models for [X] is by constructing models for the two real-valued
random variables X and X with X ≤ X , that is, descriptive models. While it can describe the
structure and variation between intervals, it is unable to model the distribution of latent data
points within an interval, as it is simply a model for the interval endpoints. This approach is almost
universal in the symbolic data analysis literature. As an alternative, we develop the generative
model, which is constructed directly at the level of the latent data points X1:m through the data
aggregation function 𝜑(·). In the following, we use F[X](·) and f[X](·) for interval-valued random
variables and F(·) and f (·) for real-valued random variables.

A generative model of the random interval may be constructed bottom-up from the distri-
bution of latent data points X1:m and the data aggregation function 𝜑(·), based on (2). Here,
the random interval [X] is constructed from X1:m and 𝜑(·) via [X] = 𝜑(X1:m). If f (x1:m | 𝛼) is the
likelihood function of the m data points, then, from (2), we may form the containment distribution
function of [X] as

F[X]
(

x, x | 𝛼,m
)
= ∫A

𝑓 (x1∶m | 𝛼)dx1∶m, (3)

where A = {𝜑(x1:m) ⊆ [x]} denotes the collection of x1:m, for which the corresponding interval is
a subset of or equal to [x]. If 𝜑(·) is continuous, the containment distribution function (3) is twice
differentiable, and so, from (1), its contribution to the likelihood function would be

𝑓[X]
(

x, x | 𝛼,m
)
= − 𝜕2

𝜕x𝜕x∫A
𝑓 (x1∶m | 𝛼)dx1∶m. (4)

Note that containment distribution functions (3) and density functions (4) of generative models
contain a parameter m specifying the number of latent data points within [X].

When m is large, the evaluation of (4) can be challenging as it involves high-dimensional
integration. This integration can be simplified in the case where X1:m is a sequence of independent
and identically distributed (i.i.d.) random variables with Xk ∼ f (x | 𝜃) for k = 1, … ,m. We denote
the likelihood function of [X] with the i.i.d. latent data points by

𝑓⋆
[X]
(

x, x | 𝜃,m
)
= − 𝜕2

𝜕x𝜕x∫A

m∏
k=1

𝑓 (xk | 𝜃)dx1∶m (5)

and term it the i.i.d. generative model.
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ZHANG ET AL. Scandinavian Journal of Statistics 7

In practice, the data aggregation function 𝜑(·) will typically depend on the order statistics
of the latent data points, so that 𝜑l,u(x1:m) = [x(l), x(u)], where x(l) and x(u) are, respectively,
the lth (lower) and uth (upper) order statistics of x1:m. The region for integration in (3) and (4)
then becomes A = {x1∶m ∶ x ≤ x(l) ≤ x(u) ≤ x}—the collection of x1:m for which the lth-order
statistic is no less than x and the uth-order statistic is no greater than x. In this case and for i.i.d.
random variables Xk ∼ f (x | 𝜃) for k = 1, … ,m, the likelihood function (5) becomes

𝑓⋆
[X]
(

x, x | 𝜃,m, l,u
)
= m!

(l − 1)!(u − l − 1)!(m − u)!
[
F
(

x | 𝜃)]l−1

×
[
F
(

x | 𝜃) − F
(

x | 𝜃)]u−l−1[1 − F
(

x | 𝜃)]m−u
𝑓
(

x | 𝜃) 𝑓(x | 𝜃) , (6)

where F(x | 𝜃) = ∫ x
−∞ 𝑓 (z | 𝜃)dz is the cumulative distribution function of Xk. That is, (5) reduces

to (6), which is the joint likelihood function of the lth- and uth-order statistics of m i.i.d. samples.
Consequently, if l∕(m + 1) → p and u∕(m + 1) → p as m → ∞, the distribution of [X] converges
to a point mass at [Q(p; 𝜃),Q(p; 𝜃)], where Q(·; 𝜃) is the quantile function of f (x | 𝜃).

Further simplification is possible when [X] is constructed from the minimum and maximum
values of X1:m (so that l = 1 and u = m). Here, A = {x1∶m ∶ x ≤ xk ≤ x, k = 1, … ,m} is a
hyper-rectangle in Rm with identical length in each dimension, and the likelihood function (6)
becomes

𝑓⋆⋆
[X]

(
x, x | 𝜃,m

)
= m(m − 1)

[
F
(

x | 𝜃) − F
(

x | 𝜃)]m−2
𝑓
(

x | 𝜃) 𝑓(x | 𝜃) . (7)

In this case, if the support of f (x | 𝜃) is bounded on [a, b], then as m → ∞, the distribution of [X]
converges to a point mass at [a, b]. However, if f (x | 𝜃) has unbounded support, the distribution of
[X] will diverge to ( −∞, +∞).

From the above, we may conclude that, for i.i.d. generative models, when m is large,
all interval-valued observations will be similar. As in practice, we may expect significant variation
in interval-valued observations, even for a large m value; this indicates that the usefulness of an
i.i.d. model may be restricted to specific settings.

3.1 Hierarchical generative models
Evaluating the likelihood function (4) of the generative model for general latent distributions
f (x1:m | 𝛼) of latent data points is challenging, except in simplified settings. Here, we consider
a special class of the generative model for which the latent data points X1:m are exchangeable.
This exchangeability leads to a hierarchical generative model, which can capture both inter- and
intra-interval structure and variability.

Suppose that X1:m are exchangeable, that is, their joint distribution is invariant to any permuta-
tion of X1:m. From de Finetti's theorem (Aldous, 1985), the distribution of X1:m may be represented
as a mixture, that is,

P(X1∶m ∈ A) = ∫ P(m)
⋆ (X1∶m ∈ A)𝜇P⋆

(dP⋆), (8)

where 𝜇P⋆
is the distribution on the space of all probability measures of R, and P(m)

⋆ =
∏

mP⋆

is the product measure on Rm. In other words, all Xk for k = 1, … ,m are i.i.d. from P⋆ with
P⋆ ∼ 𝜇P⋆

. By recalling from (3) and (4) that A = {𝜑(x1:m) ⊆ [x]}, then the mixture component
P(m)
⋆ (X1∶m ∈ A) is equal to P(m)

⋆ ([X] ⊆ [x]), which is the containment distribution function
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8 Scandinavian Journal of Statistics ZHANG ET AL.

for an i.i.d. generative model of [X], with Xk ∼ P⋆ for k = 1, … ,m and the same data aggregation
function 𝜑(·). This means that P([X] ⊆ [x]), which is equal to P(X1:m ∈ A), may be represented as
the mixture of P(m)

⋆ ([X] ⊆ [x]) with P⋆ ∼ 𝜇P⋆
, that is, as a mixture of i.i.d. generative models.

In the following, we consider the case when P⋆ belongs to some parametric family, so that
dP⋆ = f (x | 𝜃) dx. From (8), the joint density function of X1:m is then given by the mixture rep-
resentation ∫ ∏m

k=1 𝑓 (xk | 𝜃)𝜋(𝜃)d𝜃, where the mixing distribution 𝜋(𝜃) may be nonparametric
or parametric 𝜋(𝜃 | 𝛼) with parameter 𝛼. The resulting containment distribution function of [X] is
then the mixture of F[X](x, x | 𝜃,m) given in (3), with 𝑓 (x1∶m | 𝜃) = ∏m

k=1 𝑓 (xk | 𝜃), with respect
to (w.r.t.) 𝜋(𝜃 | 𝛼). If 𝜑(·) is continuous, we obtain the likelihood function of such a generative
model as

𝑓[X]
(

x, x | 𝛼,m
)
= ∫ 𝑓⋆

[X]
(

x, x | 𝜃,m
)
𝜋(𝜃 | 𝛼)d𝜃, (9)

where 𝑓⋆
[X](x, x | 𝜃,m) is the likelihood function of i.i.d. generative model (5).

In practice, the latent data points X1:m may not be exchangeable. However, the data aggrega-
tion function 𝜑(·) may be symmetric. Let Γ be the set of all permutations of the indices from 1
to m and X𝛾 be the latent data points X1:m permuted according to 𝛾 ∈ Γ with density function
f (x𝛾 ). As 𝜑(·) is symmetric, 𝜑(x𝛾 ) = 𝜑(x1:m), and thus, [X𝛾 ] = 𝜑(X𝛾 ) has the same contain-
ment distribution function as [X]. As a result, for the exchangeable random variables defined as
Y1∶m ∼ 1

m!
∑

𝛾∈Γ𝑓 (X𝛾 ), [Y] = 𝜑(Y1:m) has the same containment distribution function as [X].
The existence of such Y1:m implies that when the latent data points X1:m are aggregated into

intervals [X] by symmetric data aggregation methods, information on the order-related depen-
dence structure will vanish. As a result, it is unnecessary to model the distribution of X1:m with a
more complex dependence structure than exchangeability—modeling the exchangeable Y1:m will
be sufficient.

Accordingly, for random intervals [X1], … , [Xn], the generative model (9) can be directly
interpreted as the hierarchical model

[Xi] = 𝜑(Xi,1∶m),

Xi,k ∼ 𝑓 (x | 𝜃i), k = 1, … ,mi,

𝜃i ∼ 𝜋(𝜃 | 𝛼),
with known mi for i = 1, … ,n. Thus, we term them hierarchical generative models. The contri-
bution to the integrated likelihood (9) for the first two terms is given by 𝑓⋆

[X](xi, xi | 𝜃i,mi)—the
likelihood function of the i.i.d. generative model (5) for the interval-valued observation [xi], with
the density function of each (conditionally) i.i.d. latent data point Xi,1∶mi given by f (xi,k | 𝜃i) and
where 𝜋(𝜃 | 𝛼) is the mixing distribution for 𝜃i given the parameter 𝛼. Given such interpretation,
f(xi,k | 𝜃i) (or 𝜃i) is the local density function (or parameter) for [Xi], whereas 𝜋(𝜃 | 𝛼) (or 𝛼) is the
global density function (or parameter) among all intervals. Therefore, the intra-interval structure
is described by the local density function and m, whereas the inter-interval variability is modeled
by the global density function.

As a result, inference on this model permits direct analysis of the underlying distribution
of data points X1:m within each interval [Xi] and its model parameter 𝜃i—an advantageous
property of the generative model over the descriptive model. For example, if the global density
𝜋(𝜃 | 𝛼) works as the prior distribution, in the Bayesian framework, for the local parameter 𝜃i,
𝜋(𝜃i | 𝛼, [xi]) ∝ 𝑓⋆

[X](xi, xi | 𝜃i,mi)𝜋(𝜃i | 𝛼) is the posterior distribution of the parameter of the
local density f (x | 𝜃i) underlying [xi]. Similarly, the posterior predictive distribution of latent data
points underlying [xi] is directly available as 𝜋(x | 𝛼, [xi]) ∝ ∫ 𝑓 (x | 𝜃i)𝜋(𝜃i | 𝛼, [xi])d𝜃i.
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ZHANG ET AL. Scandinavian Journal of Statistics 9

3.2 Asymptotic properties
Although they are constructed quite distinctly, it is possible to directly relate the descriptive and
generative models under specific circumstances. In particular, for standard (descriptive) symbolic
analysis techniques, when there is no prior knowledge on the distribution of data within an inter-
val, this distribution is commonly assumed to be uniform U(a, b)with a ≤ b (e.g., Le-Rademacher
& Billard, 2011). Let I(x, x ∶ a ≤ x ≤ x ≤ b) be an indicator function of x and x, which is equal
to 1 when a ≤ x ≤ x ≤ b and 0 elsewhere. Defining f (x | 𝜃) so that Xk ∼ U(a, b) for k = 1, … ,m
and constructing [X] = 𝜑1,m(X1:m) from the minimum and maximum values of these latent data
points, then the density function of [X] given by (7) becomes

𝑓⋆⋆
[X]

(
x, x | a, b,m

)
= m(m − 1)

(
x − x

)m−2(b − a)−mI
(

x, x ∶ a ≤ x ≤ x ≤ b
)
,

which converges to a point mass at [a, b] as m → ∞ (Section 3). Then, by substituting
𝑓⋆⋆
[X] (x, x | a, b,m) into (9), the hierarchical generative model becomes

𝑓[X]
(

x, x | m
)
= ∫∫{a≤ x,b≥ x}

m(m − 1)
(

x − x
)m−2

(b − a)m 𝜋(a, b)dadb, (10)

where 𝜋(a, b) describes the inter-interval parameter variability. When m is large, the following
theorem states that this hierarchical generative model converges to 𝜋(x, x), which is a valid
descriptive model.

Theorem 4. Suppose that [X] = 𝜑1,m(X1:m) with Xk ∼ U(a, b) for k = 1, … ,m and the global
density function 𝜋(a, b) is bounded, continuous, and equal to 0 when a > b. Then, as m → ∞,
the density function of [X] (10) converges to 𝜋(x, x) pointwise, that is,

lim
m→∞

𝑓[X]
(

x, x | m
)
= 𝜋

(
x, x

)
.

This result is interesting in that it reveals that descriptive models for [X] ∼ 𝑓[X](x, x | 𝜃)
described in Section 2.1 (e.g., Arroyo et al., 2011; Le-Rademacher & Billard, 2011; Brito & Duarte
Silva, 2012) actually possess an underlying and implicit generative structure. Specifically, the sam-
pling process of the descriptive model [X] ∼ 𝑓[X](x, x) = 𝜋(x, x) can be expressed via the generative
process

[X] = lim
m→∞

𝜑1,m (X1∶m) ,

X1,X2 … ∼ U
(

X
⋆
,X⋆

)
,(

X
⋆
,X⋆

)
∼ 𝜋

(
x, x

)
.

That is, to obtain a sample realization of [X], values of lower- and upper-bound parameters,
(X

⋆
,X⋆), of local uniform distribution are first drawn from the descriptive model 𝜋(x, x), which,

in this case, is exactly equivalent to the global density for the associated underlying hierarchi-
cal generative model. As the resulting infinite collection of latent data points Xk ∼ U(X

⋆
,X⋆)

fully identifies the local density and min{Xk} = X
⋆

, max{Xk} = X⋆ are sufficient statistics
for uniform distributions, the generated interval [X] is then determined as [X] = [X

⋆
,X⋆] with

(X
⋆
,X⋆) ∼ 𝜋(x

⋆
, x⋆). As a result, there is no loss of information from the data aggregation pro-

cedure, and the variation of [X] is completely due to the variation permitted in the distribution
of local parameters, which is the global distribution. In this manner, the descriptive model is a
special case of and directly interpretable as a particular generative model.
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10 Scandinavian Journal of Statistics ZHANG ET AL.

This idea can be extended to a more general class of hierarchical generative models in which
the local distribution is only governed by location (𝜇) and scale (𝜏 > 0) parameters, so that
Xk ∼ f (x |𝜇, 𝜏) for k = 1, … ,m. Suppose x and x are the lth- and uth-order statistics, respectively.
The associated values of 𝜇 and 𝜏 are available by solving{

Q(l∕(m + 1);𝜇, 𝜏) = x
Q(u∕(m + 1);𝜇, 𝜏) = x,

(11)

where Q(·;𝜇, 𝜏) is the quantile function of f (x |𝜇, 𝜏). If a unique solution exists for (11), then
f (x |𝜇, 𝜏) is an interval-identifiable local distribution.

We previously discussed that, under the order statistic–based data aggregation function, the
i.i.d. generative model (6) will converge to a point mass as m → ∞. Similar to Theorem 4, those
hierarchical generative models (9) with interval-identifiable local density functions f (x |𝜇, 𝜏) will
also converge to descriptive models.

Theorem 5. Suppose that [X] = 𝜑l,u(X1:m) with Xk ∼ f (x |𝜇, 𝜏) for k = 1, … ,m, where
the local density function f (x |𝜇, 𝜏) is interval identifiable with location parameter 𝜇 and scale
parameter 𝜏 > 0. Further suppose that l∕(m + 1) → p > 0 and u∕(m + 1) → p < 1 as m → ∞
and that

(i) the global density function 𝜋(𝜇, 𝜏) is twice differentiable,
(ii) f (x |𝜇, 𝜏) is positive and continuous in neighborhoods of Q(p;𝜇, 𝜏) and Q(p;𝜇, 𝜏), and

(iii) ∫∫ |𝑓⋆
[X](x, x | 𝜇, 𝜏,m, l,u) | 𝜋(𝜇, 𝜏)d𝜇d𝜏 < ∞ for any 0 < l < u < m.

Then, as m → ∞, the density function of [X] for the hierarchical generative model (9) converges
pointwise to

𝜋⋆
(

x, x
)
= 𝜋

(
𝜇
(

x, x; p, p
)
, 𝜏
(

x, x; p, p
))

×
||||J (𝜇 (x, x; p, p

)
, 𝜏
(

x, x; p, p
)
; p, p

)||||−1
,

where 𝜇(x, x; p, p) and 𝜏(x, x; p, p) are the solution of (11) and

J
(
𝜇, 𝜏; p, p

)
=
⎛⎜⎜⎝

𝜕

𝜕𝜇
Q
(

p | 𝜇, 𝜏) 𝜕

𝜕𝜏
Q
(

p | 𝜇, 𝜏)
𝜕

𝜕𝜇
Q
(

p | 𝜇, 𝜏) 𝜕

𝜕𝜏
Q
(

p | 𝜇, 𝜏) ⎞⎟⎟⎠ .
In the specific case where f (x | a, b) is a U[a, b] local density function, with quantile function

Q( p | a, b) = (1 − p)a + pb, the hierarchical generative model (9) converges to the distribution of[(
1 − p

)
X

⋆
+ pX⋆,

(
1 − p

)
X

⋆
+ pX⋆

]
,

where (X
⋆
,X⋆) ∼ 𝜋(x, x).

4 MULTIVARIATE MODELS FOR HYPER-RECTANGLES

The p-dimensional equivalent of the univariate interval-valued random variable [X] is the
random p-hyper-rectangle, which corresponds to a p-tuple of random intervals. Specifically,
we denote [x] = ([x1], … , [xp]) ∈ Ip as a hyper-rectangle in the space of p-hyper-rectangles and
x = (x1, … , xp) ∈ Rp as one p-dimensional latent data point. It is straightforward to extend
the previous theory on containment distribution functions and likelihood functions for random
intervals (Sections 2 and 3) to random hyper-rectangles.
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ZHANG ET AL. Scandinavian Journal of Statistics 11

4.1 Containment distribution functions
Similar to Section 2.1, descriptive models for random p-hyper-rectangles may be constructed
through direct specification of the 2p-dimensional density function 𝑓[X](x1, x1, … , xp, xp). These
models are easily constructed and simple to use but have the same limitations as the descriptive
models for random intervals discussed in Section 2.1.

The containment distribution function of [X], denoted F[X] ∶ R2p → [0, 1], is a function on
the real hyperplane, having similar properties to those described in Definition 1 (not stated here
for brevity). The following theorems show the connection between the containment distribution
function and the density function for [X].

Theorem 6. Provided that 𝑓[X] ∶ R2p → R is the density function of a random p-hyper-
rectangle [X], the containment distribution function can be derived as follows:

F[X]

(
x1, x1, … , xp, xp

)
= ∫

xp

xp

· · ·∫
x1

x1

𝑓[X]

(
x′1, x′1, … , x′p, x′p

)
dx′1dx′1 … dx′pdx′p.

Theorem 7. Let F[X] ∶ R2p → [0,1] be the containment distribution function of a random
hyper-rectangle [X]. If F[X] is 2p-times differentiable, then the density function of [X] is

𝑓[X]

(
x1, x1, … , xp, xp

)
= (−1)p 𝜕2p

𝜕x1𝜕x1 … 𝜕xp𝜕xp
F[X]

(
x1, x1, … , xp, xp

)
. (12)

4.2 Generative models
Containment distribution functions and likelihood functions of generative models may be formu-
lated using the same ideas as in (3) and (4). However, due to the necessity of calculating 2pth-order
mixed derivatives in (12), although intuitive, the structure of the resulting likelihood functions
would be highly complex, even for i.i.d. generative models of random rectangles. The full form
of the likelihood function for an i.i.d. generative model in the bivariate case [X] = [X1] × [X2] is
presented in the Appendix A.5.

The complex form of the likelihood function of an i.i.d. generative model accordingly induces
a similarly complex hierarchical generative model. One option to produce more tractable mod-
els is to impose a conditional independence structure within each p-dimensional latent data
point, so that xk ∼ 𝑓 (x | 𝜃1∶p) =

∏p
𝑗=1 𝑓 (x𝑗 | 𝜃𝑗). Consequently, each random interval marginal

distribution of the p-hyper-rectangle is conditionally independent of others, that is,

𝑓⋆
[X]

(
x1, x1, … , xp, xp | 𝜃1∶p

)
=

p∏
𝑗=1

𝑓⋆
[X𝑗 ]

(
x
𝑗
, x𝑗 | 𝜃𝑗) ,

where 𝑓⋆
[X𝑗 ]

(x
𝑗
, x𝑗 | 𝜃𝑗) is the likelihood function of the i.i.d. generative model (5) for [Xj]. Although

this choice will result in clear modeling consequences, the resulting likelihood function for the
hierarchical generative model

𝑓[X]

(
x1, x1, … , xp, xp | m, 𝛼

)
= ∫

p∏
𝑗=1

𝑓⋆
[X𝑗 ]

(
x
𝑗
, x𝑗 | 𝜃𝑗)𝜋(𝜃1∶p | 𝛼)d𝜃1∶p (13)

will only then require p second-order mixed derivatives.
In this scenario, dependencies between the random interval marginal distributions of [X],

such as temporal or spatial dependencies, are controlled only by the dependence among local
parameters 𝜃1:p as introduced by the global distribution 𝜋(𝜃1:p | 𝛼). As a result, beyond any
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12 Scandinavian Journal of Statistics ZHANG ET AL.

a priori information on the joint distribution of the p-dimensional latent data points underlying
construction of the random interval [X] being incorporated within 𝜋(𝜃1:p | 𝛼), it will be impossible
to identify any further dependence based on the observed p-hyper-rectangles. If this is inade-
quate for a given analysis, the full multivariate likelihood will need to be derived (see, e.g., the
Appendix A.5).

5 APPLICATIONS

We illustrate our new models by first comparing the performance of the generative models to the
existing descriptive models for simulated univariate (random interval) data. We then provide a
generative model reanalysis of a real data set of 5000 credit card customers, as previously analyzed
by Brito and Duarte Silva (2012) using a descriptive model. The size of this data set does not merit
the use of symbolic data methods for its analysis; however, it does serve as a useful illustration
of the benefits of generative models. We conclude with an examination of the robustness of the
generative method to model mis-specification.

5.1 Simulated data analysis
In order to provide a direct comparison between descriptive and generative models, we construct
our observed random intervals under the generative model as [xi] = [xi, xi], where xi and xi
are, respectively, the observed minimum and maximum values of xi1, … , ximi under the mixture
model

xi1, … , ximi ∼ U(ci − e𝜏i , ci + e𝜏i),
ci ∼ N

(
𝜇c, 𝜎

2
c
)

and 𝜏i ∼ N
(
𝜇𝜏, 𝜎

2
𝜏

)
,

(14)

for i = 1, … ,n. From Theorem 4, this hierarchical model is asymptotically equivalent
(as mi → ∞ for each i) to a descriptive model with [x⋆i ] = [c⋆i − e𝜏⋆i , c⋆i + e𝜏⋆i ], where (c⋆i , 𝜏

⋆
i ) fol-

lows the same joint distribution as (ci, 𝜏 i). While, in practice, random intervals will generally be
constructed from different numbers of random samples, xi1, … , ximi (e.g., see Section 5.2), here,
we specify mi = m for all i = 1, … ,n. In this analysis, we will compare the maximum likelihood
estimators (MLEs) of parameters for both generative and descriptive models obtained using data
simulated from each model.

For each random interval [xi] under the mixture model, the two-dimensional integration (9),
with 𝜃 = (ci, 𝜏 i), can be reduced to a one-dimensional integration by first integrating out ci and
then reparameterizing to zi = m(𝜏i− log 1

2
(xi−xi)). This leads to the likelihood function of a single

interval observation [xi] given by

∫
∞

0

(
xi − xi

)−2(m − 1)e−zi𝜙

(
m−1zi + log

xi − xi

2
;𝜇𝜏, 𝜎

2
𝜏

)

×

{
Φ

(
xi +

xi − xi

2
em−1zi ;𝜇c, 𝜎

2
c

)
− Φ

(
xi −

xi − xi

2
em−1zi ;𝜇c, 𝜎

2
c

)}
dzi,

(15)

where 𝜙 and Φ respectively denote the Gaussian density and distribution function. This form
may be quickly and accurately approximated by Gauss–Laguerre quadrature methods (e.g., Evans
& Swartz, 2000). The form of the integrand in (15) for varying m and the resulting negative
log-likelihood function are shown in Figure 1 for xi = −1, xi = 1, 𝜇c = 𝜇𝜏 = 0, and 𝜎2

c = 𝜎2
𝜏 = 1.
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FIGURE 1 (a) Forms of the integrand in (15), with m = 2, 5, 10, 25, 50, 100, as a function of zi. (b) Negative
log-likelihood function as a function of m, when xi = −1, xi = 1, 𝜇c = 𝜇𝜏 = 0, and 𝜎2

c = 𝜎2
𝜏 = 1

These plots illustrate the convergence of the generative model to the descriptive model as m gets
large (Theorem 4), with only very minor differences observed for m > 30, and suggest (panel (a))
that quadrature integration methods will be accurate with around 20 nodes.

We simulate 1000 replicate data sets, each comprising n = 100 intervals, from the descrip-
tive model with c⋆i , 𝜏

⋆
i ∼ N(0, 1) for i = 1, … ,n (i.e., 𝜇c = 𝜇𝜏 = 0 and 𝜎2

c = 𝜎2
𝜏 = 1). MLEs

of the model parameters (𝜇c, 𝜇𝜏 , 𝜎
2
c , 𝜎

2
𝜏 ) are obtained from fitting both descriptive and generative

models, with the latter assuming a specified number of latent variables, m. Note that, in prac-
tice, the number of latent variables, m, will typically be known (and finite). The first column of
Figure 2 illustrates the differences between the resulting descriptive and generative model param-
eter MLEs (e.g., 𝜇̂(D)

c − 𝜇̂
(G)
c , where the superscripts indicate parameters of the descriptive (D) and

generative (G) models), with the solid line indicating the mean and the dotted lines indicating the
central 95% interval, computed over the 1000 replicates.

First, we notice that the difference between the estimates is large for small m values and
becomes gradually smaller as m increases. This is not surprising as, in this model specification,
the generative model approaches the descriptive mode as m → ∞. However, as both models are
identically centered, the mean difference between the location parameter estimates 𝜇̂(D)

c and 𝜇̂
(G)
c

is zero, regardless of the number of latent variables.
An obvious area of difference is that the point estimates of the interval half-range (modeled

by 𝜇𝜏) are much smaller for the (correct) descriptive model than for the generative model. This
occurs as the expected range of xi1, … , xim under a generative model is lower for small m values
than it is for large m values. As a result, the generative model will determine that 𝜇𝜏 should be
sufficiently larger for small m values than it would be for large m values, given the same observed
[xi, xi]. That is, if the data are truly generated from the descriptive model, parameters estimated
from the generative model are effectively biased for any finite m and overestimate the true model
parameters, with the magnitude of the bias determined by the assumed value of m. Of course, this
bias can be reduced by setting m to be large in this case.
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FIGURE 2 Differences between the maximum likelihood estimators (MLEs) of the descriptive model and the
generative hierarchical model, based on data generated from each model (left column: descriptive model data;
right column: generative model data), as a function of m = 5, … , 100, the number of latent data points
xi1, … , xim in the generative model. Lines indicate the MLE means (solid lines) and 2.5% and 97.5% quantiles
(dashed lines) based on 1000 replicate data sets
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The second area of difference is that the estimated variability of the point estimates of interval
location and scale (𝜎̂2

c and 𝜎̂2
𝜏 ) is higher under the descriptive model than that under the genera-

tive model. This occurs as the generative model assumes that the variability of, for example, xi+xi

2
comprises both the variability of the latent data xi1, … , xm within interval i, in addition to the vari-
ability of interval locations ci between intervals. Under the descriptive model, this first source of
variability is zero, and therefore, 𝜎̂2(D)

c will always be greater than 𝜎̂
2(G)
c for finite m values. Similar

reasoning explains why 𝜎̂
2(D)
𝜏 is always greater than 𝜎̂

2(G)
𝜏 .

The second column of Figure 2 shows the same output as the first column, but based on data
simulated from the generative model with the same parameter settings as before and for varying
(true) numbers of latent data points m = 5, … , 100. The results are similar to before, except crit-
ically with the interpretation that the generative model with fixed m is now correct. This means
that, for example, if intervals are constructed using the generative process (which is the most likely
scenario in practice) but are then analyzed with a descriptive model, the point estimates of the
interval range (𝜇𝜏) can be substantially underestimated by assuming m → ∞ under the descrip-
tive model, when, in fact, m is small and finite. Similarly, the estimates of 𝜎2

c and 𝜎2
𝜏 will always

be overestimated when assuming an incorrect descriptive model. These scenarios will obviously
be problematic for data analysis in practice.

The takeaway message of this analysis is that it is important to fit the model (descriptive or
generative) that matches the interval (or p-hyper-rectangle) construction process. Failure to do
so can result in misinterpretation of model parameters, resulting in severe biases in parameter
estimates, which can then detrimentally impact an analysis. In practice, intervals tend to be con-
structed from underlying classical data (e.g., see Section 5.2), using a known process and where
m is also known. This implies that the generative model is a more natural construction than the
descriptive model and with parameters that more directly relate to the observed data.

While this analysis has assumed uniformity of the generative process (14) in order that the
descriptive model is obtained as m → ∞ and, hence, that the parameter estimates between the two
models can be directly compared, the same principles of interpretation and bias occur regardless
of the generative model. The parameters are simply less directly comparable with each other.

5.2 Analysis of credit card data
The data (available in the SPSS package customer.dbase) comprise log income and log credit card
debt in thousands of U.S. dollars of 5000 credit card customers. In a previous analysis using
descriptive models by Brito and Duarte Silva (2012), these data were aggregated into random
bivariate rectangles by stratifying individuals according to gender, age category (18–24, 25–34,
35–49, 50–64, 65+ years old), level of education (did not complete high school, high school degree,
some college, college degree, undergraduate degree+), and designation of primary credit card
(none, gold, platinum, other). This leads to 192 nonempty groups, each producing a random rect-
angle [xi1] × [xi2] constructed by the intervals bounded by the minimum and maximum observed
values on log income and log credit card debt.

The data are illustrated in Figure 3, along with the underlying data and constructed random
rectangles for three of the 192 groups, containing (a) mia = 5, (b) mib = 28, and (c) mic = 56 indi-
viduals. The number of individuals in all groups varies greatly (from 5 to 56), and it is noticeable
that the distribution of individuals within each group comes from a nonuniform distribution.
As a result, the usual uniformity assumption of descriptive models for random rectangles is
clearly inappropriate. The generative model is more suited to dealing with these heterogeneous
rectangle-valued data containing complex intra-rectangle structures.
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(b): m = 28 individuals (c): m = 56 individuals

FIGURE 3 Log income and log credit card debt in thousands of U.S. dollars for 5000 customers. Panels
illustrate rectangle-valued observations constructed from three groups of customers comprising (a) mia

= 5,
(b) mib

= 28, and (c) mic
= 56 individuals. The contours in the last three panels indicate the predictive

distributions of individuals for each group conditional on the corresponding rectangle-valued observations,
based on the generative model

Given the clear nonuniformity within each group i, we assume that the underlying data are
Gaussian with group-specific means and covariances. That is,

(xi1, xi2) ∼ N2(𝜇i,Σi)

for i = 1, … ,n = 192, where 𝜇i = (𝜇i1, 𝜇i2) andΣi = diag(𝜎2
i1, 𝜎

2
i2). Note that we choose to model

log income and log credit card debt as uncorrelated, despite there being some visual evidence
of positive correlation in the data underlying each random rectangle. It is worth briefly explain-
ing this decision in detail. For a small number of latent data points mi, it is possible for a single
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TABLE 1 Maximum likelihood estimates (MLEs) and 95% asymptotic confidence intervals
(CIs) for the parameters of the generative and descriptive models for the credit card data set

𝜽1 𝝀𝟐
𝟏 𝜽2 𝝀𝟐

𝟐 𝝆𝝁 𝜼1 𝝐𝟐𝟏 𝜼2 𝝐𝟐𝟐

Generative
MLE 3.76 0.13 −0.36 0.21 0.90 −1.20 0.48 0.41 0.09

95% CI
3.70 0.10 −0.44 0.13 0.83 −1.31 0.35 0.34 0.04
3.82 0.17 −0.26 0.29 0.98 −1.09 0.61 0.48 0.13

Descriptive
MLE 3.79 0.17 −0.42 0.52 0.57 0.02 0.20 0.82 0.09

95% CI
3.74 0.13 −0.53 0.41 0.47 −0.04 0.16 0.78 0.07
3.85 0.20 −0.32 0.62 0.67 0.08 0.24 0.87 0.11

point to determine both upper (or lower) ranges of the random rectangle, and the probability of
this occurring increases as the correlation of the underlying data increases. Hence, in principle,
there is some information about the correlation structure of the underlying data available through
the associated random rectangle. However, for groups with larger mi values, the upper and lower
ranges of the random rectangles are more likely to be determined by four individual data points,
in which case it is not then possible to discern the underlying correlation structure. Although we
have several groups with small numbers of latent data points (e.g., mia = 5), in principle allow-
ing their correlation to be estimated, note that the same random rectangles will arise whether the
latent data are positively or negatively correlated. That is, the correlation parameter is nonidenti-
fiable from the observed rectangle data. As such, we proceed without attempting to estimate this
parameter, despite information on the magnitude of the correlation being available in principle
for some groups.

We model the group-specific (local) parameters as

(𝜇i1, 𝜇i2) ∼ N2
(
𝜃1, 𝜃2, 𝜆

2
1, 𝜆

2
2, 𝜌𝜇

)
,

log 𝜎2
i𝑗 ∼ N

(
𝜂𝑗, 𝜖

2
𝑗

)
,

(16)

for j = 1, 2 and i = 1, … , 192. The integration in the generative model (13) is achieved using
Gauss–Hermite quadratures with 204 nodes to integrate over the four parameters.

Maximum likelihood estimates and 95% confidence intervals for each model parameter are
illustrated in Table 1 for both generative and descriptive models. Similar to the results for the sim-
ulated examples, the point estimates of location (𝜃1 and 𝜃2) are broadly insensitive to the choice
of model; however, the estimated values for many of other parameters differ between the two
models. Most importantly, the estimated values of 𝜌𝜇 are considerably larger for the generative
model (𝜌̂𝜇 = 0.9040) compared to those for the descriptive model (𝜌̂𝜇 = 0.5695). While both of
these indicate a positive relationship between income and credit card debt, which is evident in
the underlying data in Figure 3, there is a clear difference in the strength of that relationship.
The descriptive model results in a weaker estimated value in the correlation because it does not
take the noisy data–generating process into account. While we suspect that the generative model
may be the more accurate of the two given the data generating procedure used to construct the
random rectangles, in terms of drawing inferential conclusions about the underlying data, it is
critical that we are certain in this regard.

For the generative models, the distribution of the local parameters (𝜇i𝑗 , 𝜎
2
i𝑗) for each

rectangle-valued observation can be computed by empirical Bayesian methods (previously, these
parameters were integrated out for the optimization in Table 1). The prior distribution for the
local parameters is the global distribution (16) with its parameter values given by the estimates
in Table 1, and the likelihood function is the local density function of one observed rectangle.
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FIGURE 4 Estimated marginal posterior distributions of the local parameters 𝜇i1, 𝜇i2, 𝜎2
i1, and 𝜎2

i2 associated
with the three groups (a)–(c) shown in Figure 3. Solid lines correspond to the prior distributions for local
parameters

The resulting marginal posterior distributions for the parameters of the observed rectangles
(a)–(c) (Figure 3) are shown in Figure 4. Compared to the prior (solid line), the parameters are well
informed, even for rectangle (a) with mia = 5 observations, with the level of precision increasing
with the number of individuals within each rectangle.

Goodness of fit for both descriptive and generative models can be evaluated through model
predictive distributions of random rectangles, in addition to predictive distributions for individ-
ual data points for the generative model. In the latter case, based on the posterior distributions
of the local parameters in Figure 4, the predictive distributions of individual data points within
the random intervals (a)–(c), conditional on observing the associated random interval, are shown
in Figure 3. While the predictive distributions are marginally independent due to model specifi-
cation, their coverage describes the observed data well. For group (a), the predictive distribution
covers a wider region than the observed rectangle, as this rectangle is constructed from only five
individuals. As the number of individuals increases in groups (b) and (c), the predictive regions
more closely represent the region of the observed rectangle, indicating that the generative model
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ZHANG ET AL. Scandinavian Journal of Statistics 19

FIGURE 5 Posterior predictive distribution of a random rectangle [y1] × [y2] for each of the groups (a)–(c)
(left column to right) in Figure 3. Columns illustrate the marginal random intervals of log income ([y1], top row)
and log debt ([y2], bottom row), with each interval [yj] = [yj1, yj2] expressed in interval center and half-range
form (yjc, yjr) = ((yj1 + yj2)∕2, (yj2 − yj1)∕2) for j = 1, 2. Solid and dashed lines indicate predictive distributions
of generative and descriptive models, respectively. The dot indicates the observed interval [xi1] × [xi2] used for
model fitting

has the ability to correctly account for the different numbers of individuals used to construct
each rectangle. The predictive distribution for group (b) individuals also indicates some robust-
ness to the two outliers that completely define the observed rectangle. This occurs as the model
correctly accounts for the fact that rectangle (b) is constructed from half the number of obser-
vations used to construct the rectangle of group (c), although both rectangles are roughly of the
same size.

The predictive distributions of random rectangles for groups (a)–(c) are illustrated in Figure 5
for both descriptive (dashed lines) and generative (solid lines) models. Shown are the bivari-
ate predictive distributions of interval center and log half-range, for both log income (top row)
and log debt (bottom row). The dot indicates the observed interval. Under the generative
model, these distributions are obtained directly from the predictive distributions for individuals
(Figure 3).

In all cases, the predictive distributions of the generative model more accurately and more
precisely identify the location of the observed data. This is particularly the case in group (a) in
which the descriptive model is clearly indicating a lack of model fit. The predicted interval for log
debt in group (b) is not fully centered on the observed interval, as the model attempts to account
for the unlikely (under the model) construction of the observed interval by outliers (Figure 3).
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However, the observed data are still well predicted under the generative model. The overall fit to
the observed data is better under the generative model than the descriptive model, indicating that
it more accurately describes the complexities of the observed data.

5.3 Robustness to model mis-specification
Until now, we have focused on the setting where both the underlying model f (x | 𝜃) and the
data aggregation function 𝜑(·) are known. When the true f (x | 𝜃) is not known, this is the
standard setting of statistical model mis-specification. There are two possible mis-specification
scenarios in which 𝜑(·) may not be known. Firstly, 𝜑(·) may have been misreported, so that, for
example, different quantiles were used to construct intervals from data than were modeled in𝜑(·).
Second, 𝜑(·) may simply be unknown, so that the task is to analyze data having quantiles X and X
but where such quantiles are unknown. In this second scenario, at best, the generative likelihood
could be integrated over all possible 𝜑(·) with respect to some prior measure. It is possible that
with informative prior information, this could yield some viable inference, but this would likely
be circumstantial and not ideal.

The following analysis aims to examine the effect of mis-specifying the fitted model and 𝜑(·).
We consider data x1:m, with m = 1000, generated independently from either normal or uniform
distribution, both with mean 𝜇 = 0 and standard deviation 𝜎 = 2. To evaluate the effect of
outliers, we create additional data sets that replace 5% of each original data set by observations
drawn from the (normal or uniform) generating distribution with𝜇 = 0 and 𝜎 = 5. For each data
set, observed intervals are constructed through the aggregation function 𝜑i ∶= 𝜑i,m− i + 1(x1:m) =
[x(i), x(m− i + 1)], with i = 1 and i = 250 corresponding to constructing intervals based on sample
minimum/maximum and the first/third quartiles. For each of these interval data sets, we fit both
normal and uniform models and assess the impact of knowing the aggregation function 𝜑(·) by
supposing that the observed intervals are obtained from 𝜑i with i = 1, 50, 100, … , 450.

Figure 6 shows boxplots of 500 replicate maximum likelihood estimates of 𝜇 (top row) and
log(𝜎) (middle row), when the true underlying data distribution is normal, as a function of
the aggregation function 𝜑i used to fit the model. The true interval aggregation function is 𝜑1
(i = 1; left two columns) and 𝜑250 (i = 250; right two columns), and use of this is indicated
by the shaded boxplots. In each panel, the horizontal line denotes the true parameter value, and
the rightmost boxplot shows the impact of using the true aggregation function with the outlier
data sets.

The mean (𝜇; top row) is consistently well estimated, regardless of the model being fitted or
the aggregation function. This is not surprising, as changing 𝜑i affects the scale of the intervals
and not their location. However, for log 𝜎 (middle row), when the model being fitted is correct
(columns 1 and 3), using generative model aggregation functions that use narrower (wider) quan-
tiles than actually used to construct the empirical interval leads to larger (smaller) estimates of
𝜎. This observation also holds when fitting the uniform model, although the picture is distorted
due to model mis-specification (fitting a uniform model to normal data). That is, when the model
is correctly specified under the true data aggregation process, the maximum likelihood estimates
are accurate.

A goodness-of-fit check between predicted and observed intervals would not reveal problems
in any of the above analyses: Both models are in the location-and-scale family, and so, each can
describe all observed interval data sets well. However, differences can easily be seen by com-
paring to the original underlying data. The bottom row of Figure 6 denotes quantile–quantile
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ZHANG ET AL. Scandinavian Journal of Statistics 21

FIGURE 6 Boxplots of 500 replicate maximum likelihood estimates of 𝜇 and log 𝜎 under an N(0, 22) true data
generating process with m = 1000 and assuming data aggregation function 𝜙i, i = 1, 50, 100, … , 450. The true
aggregation functions are 𝜙1 (left two columns) and 𝜙250 (right two columns). The models fitted are the normal
(columns 1 and 3) and uniform (columns 2 and 4) distributions. In each panel, the rightmost boxplot indicates
the outcome using the data set with 5% outliers. The bottom row shows quantile–quantile curves of the fitted
model (y-axis) versus the empirical underlying data quantiles (x-axis). Gray curves indicate use of the correct 𝜑(·)
function. The dashed line denotes y = x [Colour figure can be viewed at wileyonlinelibrary.com]

(Q–Q) plots of the fitted model ( y-axis) against the original sample x1:m (in practice, this would be
constructed from a subsample of the data when dealing with very large data sets). In all cases,
only when the model and aggregation function are correct does the Q–Q plot align on the y = x
axis. A deviation from this indicates that either the model or 𝜑(·), or both, is incorrect. As the data
aggregation function will typically be known, this would usually suggest that it is the fitted model
that needs further requirement. However, when the data aggregation function is mis-specified,
then it may be difficult to identify a fitted model that, in combination with the mis-specified 𝜑(·),
will fit the data well. Failure to improve on a model's goodness of fit when modifying the model
could therefore indicate that the data aggregation function is mis-specified.

In the presence of outliers in the original data set (rightmost boxplots in each panel), as might
be expected, constructing intervals that are robust to these (e.g., using the first/third quartiles)
produce more sensible results than less robust intervals (e.g., using min/max). Qualitatively, simi-
lar conclusions to the above can be drawn when the true data generating process is uniform rather
than normal (see Figure A2 in the Appendix).
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6 DISCUSSION

Current techniques for modeling random intervals (p-hyper-rectangles) are based on constructing
models directly at the level of the interval-valued data (e.g., Arroyo et al., 2011; Le-Rademacher
& Billard, 2011; Brito & Duarte Silva, 2012). These approaches are additionally based on the
assumption that the unobserved individual data points from which the interval is constructed
are uniformly distributed within the interval. As we have demonstrated in Section 5, using these
descriptive methods when the data are constructed from underlying individual data points, which
is typical in practical applications, can result in misleading and biased parameter estimates and,
therefore, unreliable inferences.

In this paper, we have established the distribution theory for interval-valued random vari-
ables that are constructed bottom-up from distributions of latent real-valued data and aggregation
functions used to construct the random intervals. These generative models explicitly permit the
fitting of standard statistical models for latent data points through likelihood-based techniques,
while accounting for the manner in which the observed interval-valued data are constructed.
This approach directly accounts for the nonuniformity of latent individual data points within
intervals and provides a natural way to handle the differing number of latent data points mi within
each random interval, which is, again, typical in practice. The method as presented is fully para-
metric, although extending these ideas to the nonparametric framework would be of some interest
(e.g., Jeon, Ahn, & Park, 2015).

By deriving a descriptive model as the limiting case of a generative model (i.e., as mi → ∞ for
each i), we have demonstrated that these descriptive models have an explicit underlying genera-
tive model interpretation. In turn, this indicates why inferences from descriptive models may be
potentially misleading in practice.

In order to evaluate the integrated generative likelihood function (13) for the unimodal dis-
tributions considered in Section 5, we have used Gaussian quadrature methods. This technique
will be less useful when integrating over more than six parameters (Evans & Swartz, 1995)
or when there are strong dependencies between local parameters. In these cases, approxi-
mate MLEs can be obtained using, for example, Monte Carlo maximum likelihood estimation
(Geyer & Thompson, 1992) or Monte Carlo expectation–maximization techniques (Wei &
Tanner, 1990) or, in the Bayesian framework, Gibbs sampling (Geman & Geman, 1984) or
pseudo-marginal and other likelihood-free Monte Carlo methods (Andrieu & Roberts, 2009;
Sisson, Fan, & Beaumont, 2018).

In order to construct the likelihood function (13) for p-hyper-rectangles, we assumed indepen-
dence among all margins in local distributions to avoid the 2pth-order mixed differentiation of
F[X](x1, x1, … , xp, xp). Although this differentiation may be achieved using symbolic computation
software, the resulting likelihood functions are complex even when p = 2 (see Appendix A.5),
and the alternative of numerical differentiation would be highly computational. However, this
independence assumption does not hold if there is a priori information on the dependence struc-
ture within each latent data point x. As pointed out by Billard and Diday (2006), this is often the
case because the structure of symbolic data might determine inherent dependencies, such as logi-
cal, taxonomic, and hierarchical dependencies, but not statistical dependencies. In the generative
model, those dependencies as well as statistical dependencies can be addressed simultaneously
through the local distribution function f (x |𝜽). However, without the marginal independence
assumption, inference for these models can be challenging.

While our examples have primarily focused on minimum-and-maximum–based data aggre-
gation functions 𝜑(x1:m), there is clear interest in parameter estimation and inference for more
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robust order-based functions 𝜑l,u(x1:m), as the resulting intervals will be less sensitive to outliers,
as demonstrated in Section 5.3. The procedures for constructing the associated likelihood func-
tions are analogous to those presented here, and Theorem 5 provides their limiting descriptive
model counterpart. An additional practical question for inference using order-based aggrega-
tion functions is which order-based statistics to use. As this choice will impact the efficiency of
the resulting inference, it is an open question to understand what method of random interval
construction would be optimal for any given analysis (e.g., Beranger, Lin, & Sisson, 2018).

Finally, we have derived an approximation L̂ of the likelihood function of the underlying
data, L(x1:m |𝜽), based on constructing random intervals or p-hyper-rectangles through the data
aggregation function 𝜑(·), so that L̂(𝜑(x1∶m) | 𝜽) ≈ L(x1∶m | 𝜽). Clearly, there can be some infor-
mation loss when moving from x1:m to 𝜑(x1:m). Understanding the quality of this approximation is
important both for quantifying inferential accuracy and for guiding the design of the aggregation
function (where possible) to increase the performance of an analysis. This is the focus of current
research.
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APPENDIX

A.1 Constructing a measurable space
We denote Ω as a sample space equipped with a 𝜎-algebra ℱ and a probability measure P(·).
In order to construct a measurable space of I, we identify those subsets of I, which are equiv-
alent to particular subsets of Rm. A subset of interest is {[x′] ⊆ [x]} = {[x′] ∶ [x′] ⊆ [x]},
which corresponds to the collection of all intervals that are a subinterval of or equal to [x]. This
subset is the image of the event {[X] ⊆ [x]} = {𝜔 ∈ Ω ∶ [X](𝜔) ⊆ [x]} on I. The subset
{[X] ⊆ [x]} may also be written as {𝜑(X1:m) ⊆ [x]} = {𝜔 ∈ Ω ∶ 𝜑(X1:m(𝜔)) ⊆ [x]}, of which
the image on Rm is {𝜑(x′1∶m) ⊆ [x]} = {x′1∶m ∶ 𝜑(x′1∶m) ⊆ [x]}, that is, the subset of Rm con-
taining those x′1∶m that can generate an interval that is a subinterval of or equal to [x]. The two
subsets {[x′] ⊆ [x]} and {𝜑(x′1∶m) ⊆ [x]} are equivalent as their pre-images on Ω are identical.
As a result, given a probability measure on Rm, the probability of {𝜑(x′1∶m) ⊆ [x]} and, hence, of
{[x′] ⊆ [x]} can be calculated if only if it is measurable. This implies that in a measurable space
of I, {[x′] ⊆ [x]} should be measurable.

We construct the metric topology on I, denoted by 𝒯I, induced by the Hausdorff metric,
which specifies the distance between elements [a] and [b] as

dH ([a], [b]) = max
{||a − b|| , |||a − b|||} ,

where | · | denotes an absolute value. If we consider the mapping h([x]) = (x, x) from I to R2,
then we have d2((a, a), (b, b)) = dH ([a], [b]) for any [a], [b] ∈ I, where d2(·) is the square
metric on R2. That is, h is a distance-preserving map, or isometry, and hence, (I,𝒯I) is iso-
metrically embedded into the metric topological space on R2 induced by d2(·), which is also
known as the standard topology. The standard topology on R2 is generated by the open rectan-
gles (Munkres, 2000). This implies that 𝒯I inherits properties of the standard topology on R2,
such as completeness, local compactness, and separability (see Section A.2 for details).

Let = {{[x′] ⊆ [x]} ∶ [x] ∈ I} be the collection of subsets of interest. We can now construct a
measurable space involving  from the topology 𝒯I. Let ℬI be the smallest 𝜎-algebra containing
all open subsets ℬI = 𝜎(𝒯I), that is, the Borel 𝜎-algebra on I. The topology 𝒯I is the collection
of all open subsets of I, and the Borel 𝜎-algebra is the smallest 𝜎-algebra containing all open

x

x

(a)

(b)

(c)

O

x=x

FIGURE A1 B([a], [b]) and W{[a, b]} are (a) and (b), respectively. (a), (b), and (c) constitute the basis of 𝒯I
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subsets (Munkres, 2000). This Borel 𝜎-algebra contains , as all elements of are closures of some
elements of 𝒯I (Section A.2). The following lemma provides a stronger result that  is sufficient
to construct ℬI.

Lemma 1. The Borel𝜎-algebra on I is the smallest𝜎-algebra generated by , that is,ℬI = 𝜎( ).

This property indicates thatℬI is rich enough to ensure that all elements in  are measurable.
It also suggests that if we only define a proper nonnegative function on  , we can extend it to a
measure on (I,ℬI). In particular, if the induced measure is a probability measure, it would then
be the distribution function of [X].

Based on the isometry h([x]) = (x, x) between I and R2, we now construct a measure on
(I,ℬI), representing the uniform measure on I, which gives equal weight to all intervals. Let the
Borel 𝜎-algebra on R2 be ℬR2 and 𝜇∶ ℬR2 → [0,+∞) be the Lebesgue measure on (R2,ℬR2 ).
Due to the isometry h([x]) = (x, x), we then have that𝜇I = 𝜇 ◦ h is the uniform measure on (I,ℬI).
Consequently, the uniform measure of every Borel subset of I can be calculated via 𝜇(·) and h(·).
Specifically, for every element of  , we have

𝜇I({[x′] ⊆ [x]}) = 𝜇(h({[x′] ⊆ [x]})) = 1
2
(

x − x
)2
,

as h({[x′] ⊆ [x]}) = {(x′, x′) ∶ x ≤ x′ ≤ x′ ≤ x} is the region of an isosceles right triangle on the
real plane. From Lemma 1, the uniform measure of all Borel subsets E ∈ ℬI is also available.

Lemma 2. Define the infinitesimal neighborhood of [x] as

d[x] =
{
[x′] ∈ I | x − dx < x′ ≤ x ≤ x ≤ x′ < x + dx

}
,

where dx, dx > 0. Its uniform measure is 𝜇I(d [x]) = dx × dx.

From the above, we note that𝜇I(·) is a nonatomic measure, that is,𝜇I({[x]}) = 0, where {[x]} is
a set containing a single interval [x]. Furthermore, there is a convenient way to compute the value
of 𝜇I(·) for any Borel subset via the Lebesgue integration on R2. That is, for any subset E ∈ ℬI,
we have

𝜇I(E) = ∫E
𝜇I (d[x]) = ∫∫h(E)

dxdx.

Accordingly, through such isometry, the measurable space of intervals (I,ℬI) inherits the con-
venient structure and properties of the real plane. These results permit the construction of
distribution and density functions of random intervals.

A.2 Topology
The basis of the standard topology on R2 is the collection of all open rectangles. Its subspace
topology induced by {(x, y) ∶ x ≤ y}, as shown in Figure A1, has the basis of which element is the
remaining part of an open rectangle on the top-left half-plane. Therefore, the collection of their
counterparts on I via the isometry, h([x]) = (x, x), is the basis of 𝒯I.

The open subset of I corresponding to rectangle (a) in Figure A1 is

B([a], [b]) =
{
[x] ∶ b < x < a ≤ a < x < b

}
.

This is the collection of all intervals for which the lower bounds are bounded between a and b,
whereas the upper bounds are bounded between a and b. The open subset of I corresponding to
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triangle (b) is
W([c]) =

{
[x] ∶ c < x ≤ x < c

}
.

This is the collection of all intervals for which the lower bounds are greater than c, whereas the
upper bounds are smaller than c.

Lemma 3. Suppose that  is the collection of all B([a], [b]) and W([c]). Then,  is a basis for𝒯I.

Lemma 4. B([a], [b]) = W([b])∖[{[x] ⊆ [a, b]} ∪ {[x] ⊆ [b, a]}].

Lemma 5. 𝒯I is the smallest topology containing all W([c]) and {[x] ⊆ [c]}c.

A.3 Hypercubes
Similarly, through the property of isometry, hp([x]) = (x1, x1, … , xp, xp), it can be shown that a
basis of the topology 𝒯Ip is the collection of the following two classes of subsets:

Bp([a], [b]) =
{
[x] ∶ b

𝑗
< x

𝑗
< a

𝑗
≤ a𝑗 < x𝑗 < b𝑗 , 𝑗 = 1, … , p

}
,

Wp([c]) =
{
[x] ∶ c

𝑗
< x

𝑗
≤ x𝑗 < c𝑗 , 𝑗 = 1, … , p

}
.

The next lemma shows an analogous result of Lemma 4.

Lemma 6. Bp([a], [b]) = Wp([b])∖ ∪p
𝑗=1

[
{[x] ⊆ [a𝑗1]} ∪ {[x] ⊆ [a𝑗2]}

]
, where

[a𝑗1] =
(
[a1], … ,

[
a
𝑗
, b𝑗

]
, … , [ap]

)
,[

a𝑗2
]
=

(
[a1], … ,

[
b
𝑗
, a𝑗

]
, … , [ap]

)
.

Similar to the proof of Lemma 4, based on the above lemma, the hypercube's version of
Lemma 1 can be proved in a similar way.

A.4 Proofs
A.4.1 Proof of Lemma 1
As an isometric embedding to the standard topology of the real plane, the topology𝒯I is separable,
and thus, it has a countable basis. We define rational intervals [q] ∈ I, where q, q are rational
numbers. Then, the collection of all rational intervals, IQ, is dense in I.

We first show that Q is a countable basis of 𝒯I. Let Q be the collection of all B([q1], [q2])
and W([q]). As rational numbers are countable, Q is countable. It can be shown that Q is a basis
of a topology and that its generated topology is 𝒯I, similarly as in Lemma 3. As a result, Q is a
countable basis of 𝒯I.

Then, we show that 𝜎( ) = 𝜎(Q). For any {[x′] ⊆ [x]} ∈  , {[x′] ⊆ [x]} = W([x])c
and W([x]) ∈ 𝒯I can be generated by set operations over countable elements from Q, as Q is a
countable basis of 𝒯I. Hence, 𝜎( ) ⊆ 𝜎(Q). On the other hand, for any W([q]) ∈ Q, we have
W([q]) = ∪∞

n=k{[q
′] ⊆ [q + 1∕n, q − 1∕n]}, where q − q ≥ 2∕k, and for any B([q1], [q2]) ∈ Q,

we have B([q1], [q2]) = W([q2]) ∖ [{[q] ⊆ [ q1, q2 ]} ∪ {[q] ⊆ [q2, q1]}] (Lemma 4). Thus,
𝜎(Q) ⊆ 𝜎( ).

That is, 𝜎( ) = 𝜎(Q) = 𝜎(𝒯I).
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A.4.2 Proof of Lemma 2
We let

B⋆([a], [b]) =
{
[x] ∶ b < x ≤ a ≤ a ≤ x < b

}
. (A1)

In a way analogous to Lemma 4, we have

B⋆([a], [b]) = W([b])∖
[

W
([

a, b
])

∪ W
([

b, a
])]

. (A2)

By the continuity of the measure,

𝜇I(W([x])) = 𝜇I

(∞
∪
{
[x]′ ⊆

[
x + 1∕n, x − 1∕n

]})
= lim

n→∞
𝜇I
({

[x]′ ⊆
[
x + 1∕n, x − 1∕n

]})
= lim

n→∞

1
2
(

x − x − 2∕n
)2 = 1

2
(

x − x
)2
.

Note that W([a, b]) ∩ W([b, a]) = W([a]). We then have

𝜇I(B⋆([a], [b])) = 𝜇I(W([b])) − 𝜇I

(
W
([

a, b
]))

− 𝜇I
(

W
([

b, a
]))

+ 𝜇I(W([a]))

=
(

a − b
) (

b − a
)
.

Therefore, 𝜇I(d[x]) = 𝜇I
(

B⋆([x], [x − dx, x + dx])
)
= dx × dx.

A.4.3 Proof of Lemma 3
We first show that  is a basis for a topology. Note that, for any [x] ∈ I, there exists at least one
E ∈  s.t. [x] ∈ E. Then, we show in the following that, for any E1,E2 ∈  , if [x] ∈ E1 ∩ E2,
then there exists E3 ∈  s.t. [x] ∈ E3 and E3 ⊂ E1 ∩E2. Note that ∨ and ∧ take the maximum and
the minimum of two operands, respectively.

(i) Consider [x] ∈ B([a], [b]) ∩ B([a′], [b′]) ≠ ∅. Then, b ∨ b′ < a ∧ a′ and a ∨ a′
< b ∧ b

′
. From

[x] ∈ B([a], [b]), we have that b < x < a ≤ a < x < b. From [x] ∈ B([a′], [b′]), we have that
b′ < x < a′ ≤ a′

< x < b
′
. Therefore, b ∨ b′ < x < a ∧ a′ and a ∨ a′

< x < b ∧ b
′
. There exists

[a′′], [b′′] ∈ I s.t. b ∨ b′ < b′′ < x < a′′ < a ∧ a′ and a ∨ a′
< a′′

< x < b
′′
< b ∧ b

′
. That is,

[x] ∈ B([a′′], [b′′]) and B([a′′], [b′′]) ⊂ B([a], [b]) ∩ B([a′], [b′]).
(ii) Consider [x] ∈ W([c1]) ∩ W([c2]) ≠ ∅. Then, c1 ∨ c2 < c1 ∧ c2. From [x] ∈ W([c1]),

we have that c1 < x ≤ x < c1. From [x] ∈ W([c2]), we have that c2 < x ≤ x < c2. Therefore,
c1 ∨ c2 < x ≤ x < c1 ∧ c2. There exists [c] ∈ I s.t. c1 ∨ c2 < c < x ≤ x < c < c1 ∧ c2. That is,
[x] ∈ W([c]) and W([c]) ⊂ W([c1]) ∩ W([c2]).

(iii) Consider [x] ∈ B([a], [b]) ∩ W([c]) ≠ ∅. Then, c < a and c > a. From [x] ∈ B([a], [b]),
we have that b < x < a ≤ a < x < b. From [x] ∈ W([c]), we have that c < x ≤ x < c.
Therefore, c ∨ b < x < a ≤ a < x < c ∧ b. There exists [a′], [b′] ∈ I s.t. c ∨ b < b′ < x < a′ < a
and a < a′

< x < b
′
< c ∧ b. That is, [x] ∈ B([a′], [b′]) and B([a′], [b′]) ⊂ B([a], [b]) ∩ W([c]).

That is,  is a basis for a topology. Next, we show that  is a basis for 𝒯I. Figure A1 shows that
the basis of 𝒯I consists of three types of subsets. As B([a], [b]) is an (a)-type subset and W{[c]} is
a (b)-type subset, the topology generated by  is coarser than 𝒯I. On the other hand, for any [x]
in a (c)-type subset, we can find at least one (a)-type subset or (b)-type subset that contains that
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[x] and subsets of that (c)-type subset. Therefore, the topology generated by  is finer than 𝒯I.
In conclusion, the topology generated by  is 𝒯I.

A.4.4 Proof of Lemma 4
For any [x] ∈ B([a], [b]), that is, b < x < a ≤ a < x < b, we have [x] ∈ W([b]). Moreover,
[x] ⊈ [a, b] and [x] ⊈ [b, a], that is, [x] ∉ {[x] ⊆ [a, b]} ∪ {[x] ⊆ [b, a]}. Therefore, B([a], [b]) ⊆
W([b])∖ [{[x] ⊆ [a, b]} ∪ {[x] ⊆ [b, a]}].

On the other hand, for any [x] ∈ W([b])∖ [{[x] ⊆ [a, b]}∪{[x] ⊆ [b, a]}], we have [x] ∈ W([b]),
that is, b < x ≤ x < b. Moreover, [x] ⊈ [a, b] and [x] ⊈ [b, a], that is, x < a and x > a. Hence,
b < x < a and a < x < b, that is, [x] ∈ B([a], [b]). Therefore, W([b])∖ [{[x] ⊆ [a, b]} ∪ {[x] ⊆
[b, a]}] ⊆ B([a], [b]).

In conclusion, B([a], [b]) = W([b])∖ [{[x] ⊆ [a, b]} ∪ {[x] ⊆ [b, a]}].

A.4.5 Proof of Lemma 5
{[x] ⊆ [c]} is a closed subset, as it is the closure of W{[c]}. Accordingly, its complement {[x] ⊆ [c]}c

is open, and thus, {[x] ⊆ [c]}c ∈ 𝒯I. From Lemma 4, B([a], [b]) = W([b])∩{[x] ⊆ [a, b]}c∩{[x] ⊆
[b, a]}c. Hence, every element in  can be generated by set operations over finite elements of
W{[c]} and {[x] ⊆ [c]}c. As  is a basis of 𝒯I, every element in 𝒯I can be generated by set
operations over finite elements of W{[c]} and {[x] ⊆ [c]}c. Therefore, 𝒯I is the smallest topology
containing W([c]) and {[x] ⊆ [c]}c.

A.4.6 Proof of Theorem 1
For any function 𝑓[X](x, x) satisfying the conditions in the theorem, we can construct its contain-
ment distribution function F[X](x, x) as

F[X]
(

x, x
)
= ∫

x

x ∫
b

x
𝑓[X](a, b)dadb or F[X]

(
x, x

)
= ∫

x

x ∫
x

a
𝑓[X](a, b)dbda.

It is easy to check that F[X](x, x) satisfies the conditions in Definition 1.

A.4.7 Proof of Theorem 2
Let C[X]([x]) = F[X](x, x) be the containment functional. From Theorem 3 and its proof, it deter-
mines a unique probability measure P[X]∶ ℬI → [0, 1] on the space of intervals subject to
P[X]([x]) = F[X](x, x). As d[x] = B⋆([x], [x − dx, x + dx]), from (A1) and (A2), we have

B⋆

(
[x],

[
x − dx, x + dx

])
= W

([
x − dx, x + dx

])
∖
[
W
([

x, x + dx
])

∪ W
([

x − dx, x
])]

.

Therefore, we obtain
P[X](d[x]) = P[X]

(
W
([

x − dx, x + dx
]))

− P[X]
(

W
([

x, x + dx
]))

− P[X]
(

W
([

x − dx, x
]))

+ P[X]
(

W
([

x, x
]))

.

By the continuity of the measure and W([x]) = ∪∞
n=k

{
[x]′ ⊆

[
x + 1

n
, x − 1

n

]}
,

P[X](W([x])) = lim
x′→x+

lim
x′→x−

P[X]([X] ⊆ [x]′) = lim
x′→x+

lim
x′→x−

F[X]
(

x′, x′
)
.
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As F[X] is twice differentiable (thus continuous), P[X](W([x])) = F[X](x, x). Therefore, we have

P[X](d[x]) = F[X]
(

x − dx, x + dx
)
− F[X]

(
x, x + dx

)
− F[X]

(
x − dx, x

)
+ F[X]

(
x, x

)
.

Substituting second-order Taylor expansions for the first three terms in the above equation,
we obtain

P[X](d[x]) = − 𝜕2

𝜕x𝜕x
F[X]

(
x, x

)
dxdx + o

(
dxdx

)
.

Note that 𝜇I(d[x]) = dxdx (Theorem 2), and so,

P[X](d[x]) = − 𝜕2

𝜕x𝜕x
F[X]

(
x, x

)
𝜇I(d[x]) + o(𝜇I(d[x])).

In addition, P[X](d[x]) = 0 when 𝜇I(d[x]) = 0, that is, P[X](·) is absolute continuous w.r.t. 𝜇I(·).
Therefore, the Radon–Nikodym derivative exists, and

P[X](d[x])
𝜇I(d[x])

= − 𝜕2

𝜕x𝜕x
F[X]

(
x, x

)
.

A.4.8 Proof of Theorem 3
AsℬI = 𝜎( ) (Lemma 1), any E ∈ ℬI can be generated by set operations over, at most, countable
elements from  . Hence, its probability measure P([X] ∈ E) will be available if P([X] ⊆ [x]) is
known for any [x]. Therefore, the uniqueness has been proved.

Next, we prove the existence of a probability measure P[X]∶ ℬI → [0, 1] on the space of inter-
vals subject to P[X]({[x′] ⊆ [x]}) = C[X]([x]). Let  be the collection of all B′([x], [𝑦]) = {[x′] ∶
𝑦 ≤ x′ < x ≤ x < x′ ≤ 𝑦}. Similar to Lemma 4, we have B′([x], [𝑦]) = {[x]′ ⊆ [𝑦]}∖[{[x]′ ⊆

[x, 𝑦]} ∪ {[x]′ ⊆ [𝑦, x]}]. Then, define  =  ∪  ∪ {∅, I} and extend C[X](·) to a function PC(·) on
 s.t. PC(∅) = 0, PC(I) = 1, PC({[x′] ⊆ [x]}) = C[X]([x]), and

PC(B′([x], [𝑦])) = C[X]([𝑦]) − C[X]
([

x, 𝑦
])

− C[X]

([
𝑦, x

])
+ C[X]([x]) ≥ 0,

by condition (iii) of the definition of C[X](·) in Section 2.2. That is, PC(·) is nonnegative.
In addition, as I is locally compact, for any A ⊂ I and 𝛿 > 0, there exists E1, … ,EN ∈ 

with all 𝜇I(Ei) ≤ 𝛿, such that A ⊂ ∪N
i=1Ei. Therefore, we can use Carathéodory construction

(Durrett, 2010) to define a metric outer measure. Let P⋆
[X](A) = lim𝛿→0P𝛿(A), where

P𝛿(A) = inf

{ ∞∑
i=1

PC(Ei) ∶ Ei ∈ , diam(Ei) ≤ 𝛿, ∪∞
i=1Ei ⊇ A

}
,

where diam(Ei) is the diameter of Ei. Hence, P⋆
[X](·) is a metric outer measure, and thus, the Borel

subsets on I are measurable w.r.t. P⋆
[X](·). That is, there exists a probability measure P[X]∶ ℬI →

[0, 1], such that P[X](E) = P⋆
[X](E) for any E ∈ ℬI.

Finally, we can check that P[X]({[x′] ⊆ [x]}) = C[X]([x]). For any n = 1, 2, … , there exists
𝛿n → 0 as n → ∞ s.t. P𝛿n({[x

′] ⊆ [x]}) ≤ C[X]([x− 1
n
, x+ 1

n
]). Moreover, P𝛿({[x′] ⊆ [x]}) ≥ C[X]([x])

by definition for any 𝛿 > 0. Therefore, we have

C[X]([x]) ≤ lim
n→∞

P𝛿n({[x
′] ⊆ [x]}) ≤ lim

n→∞
C[X]

([
x − 1∕n, x + 1∕n

])
.

By condition (ii) of the definition of C[X](·) in Section 2.2, we have

lim
n→∞

C[X]
([

x − 1∕n, x + 1∕n
])

= C[X]
(
∩∞

n=1
[
x − 1∕n, x + 1∕n

])
= C[X]([x]).
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Therefore,
P[X]({[x′] ⊆ [x]}) = lim

n→∞
P𝛿n({[x

′] ⊆ [x]}) = C[X]([x]).

As a result, given a random interval [X] ∶ Ω → I, we obtain a probability measure P ∶ 𝜎([X]) →
[0, 1] s.t. P([X] ⊆ [x]) = P[X]({[x′] ⊆ [x]}) = C[X]([x]).

A.4.9 Proof of Theorem 4
Let c = a+b

2
∈ (−∞,+∞) and r = b−a

2
≥ 0. We can rewrite

𝑓[X]
(

x, x | m
)
= ∫∫{a≤x,b≥x}

m(m − 1)
(

x − x
)m−2

(b − a)m 𝜋(a, b)dadb

as
𝑓[X](x, x | m) = 2−mm(m − 1)

(
x − x

)m−2

∫∫A
r−mg(c, r)dcdr,

where g(c, r) = 2𝜋(c − r, c + r) is the density function of (c, r) and A =
{
(c, r) ∶ x − r ≤ c ≤

x + r, r ≥ x−x
2

}
. As 𝜋(·) is bounded continuously, ∫ +∞

−∞ g(c, r)dc < ∞. Let g(r) = ∫ +∞
−∞ g(c, r)dc,

B0 = {r ∶g(r) = 0}, and B1 = {r ∶g(r) ≠ 0}. When g(r) ≠ 0, we have g(c | r) = g(c,r)
g(r)

.
The above integration can be decomposed into the following two cases. In the case that g(r) ≠ 0,
we replace g(c, r) with g(r)g(c | r) and integrate out c, that is,

∫∫A∩B1

r−mg(c, r)dcdr = ∫
∞

x−x
2

r−mg(r)
{
∫

x+r

x−r
g(c | r)dc

}
dr.

In the case that g(r) = 0, we have g(c, r) = 0 and ∫∫A∩B0
r−mg(c, r)dcdr = 0.

Then, writing z = (m − 1)(log r − log x−x
2
), we have

𝑓[X]
(

x, x | m
)
= 1

2
m
(

x − x
)−1

× ∫
∞

0
e−zg

(
x − x

2
e(m−1)−1z

){
∫

x+ x−x
2

e(m−1)−1z

x− x−x
2

e(m−1)−1z
g

(
c | x − x

2
e(m−1)−1z

)
dc

}
dz.

As 𝜋(·) is bounded continuously, g(c, r) = 2𝜋(c − r, c + r) is bounded continuously. Due to the
mean value theorem, the above term can be simplified as

𝑓[X]
(

x, x | m
)
= 1

2 ∫
∞

0
m
{

e(m−1)−1z − 1
}

e−zg

(
𝜉,

x − x
2

e(m−1)−1z

)
dz,

where x+ x−x
2

e(m−1)−1z ≤ 𝜉 ≤ x− x−x
2

e(m−1)−1z. Let M(𝜉) = supz ≥ 0g(𝜉,
x−x

2
e(m−1)−1z). M(𝜉) is bounded

as g(c, r) is bounded. When m ≥ 3, we have

𝑓[X]
(

x, x | m
) ≤ M(𝜉)

2 ∫
∞

0
m
{

e(m−1)−1z − 1
}

e−z dz = m
2(m − 2)

M(𝜉) ≤ 3
2

M(𝜉).

Therefore, 𝑓[X](x, x | m) is bounded when m → ∞, and thus,

lim
m→∞

𝑓[X]
(

x, x | m
)
= 1

2 ∫
∞

0
lim

m→∞
m
{

e(m−1)−1z − 1
}

e−zg

(
𝜉,

x − x
2

e(m−1)−1z

)
dz

= 1
2
g

(
x + x

2
,

x − x
2

)
= 𝜋

(
x, x

)
.
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32 Scandinavian Journal of Statistics ZHANG ET AL.

A.4.10 Proof of Theorem 5
Let f𝜇,𝜏 = f (· |𝜇, 𝜏), and denote F𝜇,𝜏 = F(· |𝜇, 𝜏) and Q𝜇,𝜏 = Q(·;𝜇, 𝜏) as its cumulative dis-
tribution function and quantile function, respectively. As f𝜇,𝜏 is positive and continuous in the
neighborhoods of Q𝜇,𝜏(p) and Q𝜇,𝜏(p) with p > 0 and p < 1, the joint density function of

⎧⎪⎨⎪⎩
(m + 1)

1
2 𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
))(

X − Q𝜇,𝜏

(
p
))

(m + 1)
1
2 𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
)) (

X − Q𝜇,𝜏

(
p
))

converges pointwise to a bivariate normal density function, with zero mean and covariance matrix

Σ =

(
p(1 − p) p(1 − p)
p(1 − p) p(1 − p)

)
when m → ∞ (Reiss, 1989). Thus, when m is large, the density function of the i.i.d. generative
model

𝑓⋆
[X]
(

x, x | 𝜃,m, l,u
)
= m!

(l − 1)!(u − l − 1)!(m − u)!
[
F
(

x | 𝜃)]l−1

×
[
F
(

x | 𝜃) − F
(

x | 𝜃)]u−l−1[1 − F
(

x | 𝜃)]m−u
𝑓
(

x | 𝜃) 𝑓 (x | 𝜃)
is asymptotically equivalent to

m + 1
2𝜋|Σ| 1

2

𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
))

𝑓𝜇,𝜏
(

Q𝜇,𝜏

(
p
))

exp
{
−(m + 1)T

(
x, x;𝜇, 𝜏

)}
,

where

T
(

x, x;𝜇, 𝜏
)
= 1

2

(
t
(

x;𝜇, 𝜏
)
, t
(

x;𝜇, 𝜏
))

Σ−1
(

t
(

x;𝜇, 𝜏
)
, t
(

x;𝜇, 𝜏
))⊺

,

t
(

x;𝜇, 𝜏
)
= 𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
))(

x − Q𝜇,𝜏

(
p
))

,

t
(

x;𝜇, 𝜏
)
= 𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
)) (

x − Q𝜇,𝜏

(
p
))

.

That is, the density function of the hierarchical generative model

𝑓[X]
(

x, x | 𝛼,m
)
= ∫ 𝑓⋆

[X]
(

x, x | 𝜃,m
)
𝜋 (𝜃 | 𝛼) d𝜃

is asymptotically equivalent to
m + 1
2𝜋|Σ| 1

2

× H
(

x, x; p, p,m
)
, (A3)

where

H
(

x, x; p, p,m
)
= ∫∫ 𝑓𝜇,𝜏

(
Q𝜇,𝜏

(
p
))

𝑓𝜇,𝜏
(

Q𝜇,𝜏

(
p
))

𝜋(𝜇, 𝜏) exp
{
−(m + 1)T

(
x, x;𝜇, 𝜏

)}
d𝜇d𝜏.

Note thatΣ is positive definite, and so, T(x, x;𝜇, 𝜏) ≥ 0. In addition, T(x, x; p, p,m) reaches its min-
imum 0, when Q𝜇,𝜏(p) = x and Q𝜇,𝜏(p) = x. As f𝜇,𝜏 is interval identifiable, the system of equations,
Q𝜇,𝜏(p) = x and Q𝜇,𝜏(p) = x, has a unique solution, and thus, T(x, x; p, p,m) is unimodal.

As𝜇⋆ = 𝜇(x, x; p, p) and 𝜏⋆ = 𝜏(x, x; p, p) are the solutions of Q𝜇,𝜏(p) = x and Q𝜇,𝜏(p) = x, given
conditions (i) and (iii) in the theorem, a Laplace approximation can be applied to H(x, x; p, p,m)
at the point (𝜇⋆, 𝜏⋆), giving

H
(

x, x; p, p,m
)
≈ 2𝜋(m + 1)−1|||∇2T

(
x, x;𝜇⋆, 𝜏⋆

)|||− 1
2 𝑓𝜇⋆,𝜏⋆

(
x
)
𝑓𝜇⋆,𝜏⋆

(
x
)
𝜋(𝜇⋆, 𝜏⋆). (A4)
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We let T = T(x, x;𝜇, 𝜏), t = t(x;𝜇, 𝜏), t = t(x;𝜇, 𝜏), and Σ−1 =
(

a11 a12
a12 a22

)
; hence, we have

T = 1
2
(a11t2 + 2a12tt + a22t

2
). The first-order partial derivatives of T are

𝜕T
𝜕𝜇

= a11t
𝜕t
𝜕𝜇

+ a12t
𝜕t
𝜕𝜇

+ a12t 𝜕t
𝜕𝜇

+ a22t 𝜕t
𝜕𝜇

,

𝜕T
𝜕𝜏

= a11t
𝜕t
𝜕𝜏

+ a12t
𝜕t
𝜕𝜏

+ a12t 𝜕t
𝜕𝜏

+ a22t 𝜕t
𝜕𝜏

.

Let T⋆, t⋆, and t
⋆

denote the corresponding functions and their derivatives taking values at
(𝜇⋆, 𝜏⋆). As t⋆ = t

⋆
= 0, the second-order partial derivatives at (𝜇⋆, 𝜏⋆) are

𝜕2T⋆

𝜕𝜇2 = a11

(
𝜕t⋆

𝜕𝜇

)2

+ 2a12
𝜕t

⋆

𝜕𝜇

𝜕t⋆

𝜕𝜇
+ a22

(
𝜕t

⋆

𝜕𝜇

)2

,

𝜕2T⋆

𝜕𝜏2 = a11

(
𝜕t⋆

𝜕𝜏

)2

+ 2a12
𝜕t

⋆

𝜕𝜏

𝜕t⋆

𝜕𝜏
+ a22

(
𝜕t

⋆

𝜕𝜏

)2

,

𝜕2T⋆

𝜕𝜇𝜕r
= a11

𝜕t⋆

𝜕𝜇

𝜕t⋆

𝜕𝜏
+ a12

𝜕t⋆

𝜕𝜇

𝜕t
⋆

𝜕𝜏
+ a12

𝜕t⋆

𝜕𝜏

𝜕t
⋆

𝜕𝜇
+ a22

𝜕t
⋆

𝜕𝜇

𝜕t
⋆

𝜕𝜏
.

Therefore, ∇2T at (𝜇⋆, 𝜏⋆) is

∇2T⋆ =
⎛⎜⎜⎝
𝜕t⋆

𝜕𝜇

𝜕t⋆

𝜕𝜏

𝜕t
⋆

𝜕𝜇

𝜕t
⋆

𝜕𝜏

⎞⎟⎟⎠
⊺

Σ−1
⎛⎜⎜⎝
𝜕t⋆

𝜕𝜇

𝜕t⋆

𝜕𝜏

𝜕t
⋆

𝜕𝜇

𝜕t
⋆

𝜕𝜏

⎞⎟⎟⎠ ,
and its determinant is |∇2g| = |Σ|−1

(
𝜕t⋆

𝜕𝜇

𝜕t
⋆

𝜕𝜏
− 𝜕t⋆

𝜕𝜏

𝜕t
⋆

𝜕𝜇

)2
.

The derivatives of t and t at (𝜇⋆, 𝜏⋆) are

𝜕t⋆

𝜕𝜇
= −𝑓𝜇⋆,𝜏⋆

(
x
)
× 𝜕

𝜕𝜇
Q𝜇⋆,𝜏⋆

(
p
)
,

𝜕t⋆

𝜕𝜏
= −𝑓𝜇⋆,𝜏⋆

(
x
)
× 𝜕

𝜕𝜏
Q𝜇⋆,𝜏⋆

(
p
)
,

𝜕t
⋆

𝜕𝜇
= −𝑓𝜇⋆,𝜏⋆ (x) × 𝜕

𝜕𝜇
Q𝜇⋆,𝜏⋆

(
p
)
,

𝜕t
⋆

𝜕𝜏
= −𝑓𝜇⋆,𝜏⋆

(
x
)
× 𝜕

𝜕𝜏
Q𝜇⋆,𝜏⋆

(
p
)
,

and thus,

|||∇2T⋆||| = |Σ|−1𝑓𝜇⋆,𝜏⋆
(

x
)2
𝑓𝜇⋆,𝜏⋆

(
x
)2||||J (𝜇⋆, 𝜏⋆; p, p

)||||2, (A5)

where

J
(
𝜇⋆, 𝜏⋆; p, p

)
=
⎛⎜⎜⎝

𝜕

𝜕𝜇
Q𝜇⋆,𝜏⋆

(
p
)

𝜕

𝜕𝜏
Q𝜇⋆,𝜏⋆

(
p
)

𝜕

𝜕𝜇
Q𝜇⋆,𝜏⋆

(
p
) 𝜕

𝜕𝜏
Q𝜇⋆,𝜏⋆

(
p
)⎞⎟⎟⎠ .
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From (A4) and (A5), we obtain that the density function of the hierarchical generative model
(A3) converges pointwise to 𝜋(𝜇⋆, 𝜏⋆)|J(𝜇⋆, 𝜏⋆; p, p)|−1.

A.4.11 Proof of Theorems 6 and 7
Similar to the proof of Theorems 1 and 2. Use Lemma 6 and Taylor expansions.

A.5 Likelihood function of a two-dimensional i.i.d. generative model
Let [X] = [X1] × [X2] be the random rectangle generated from m i.i.d. bivariate latent data points
from f (x1, x2 | 𝜽), with the data aggregation function taking the minimum and maximum values at
each margin. Let F(x1, x2 | 𝜽) be the distribution function of f (x1, x2 | 𝜽). The distribution function
of [X1] × [X2] is

F[X]
(

x1, x1, x2, x2 | 𝜽) = [
F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) + F
(

x1, x2 | 𝜽)]m
.

This is the probability that all m latent data points fall within the rectangle [x1] × [x2]. From
Theorem 7, the likelihood function is the fourth-order mixed derivative shown as follows:

𝑓[X]
(

x1, x1, x2, x2 | 𝜽) = m(m − 1)(m − 2)(m − 3)

×
{

F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) + F
(

x1, x2 | 𝜽)}m−4

× ∫
x1

x1

𝑓
(
𝑦1, x2 | 𝜽) d𝑦1 ∫

x1

x1

𝑓
(
𝑦2, x2 | 𝜽) d𝑦2 ∫

x2

x2

𝑓
(

x1, 𝑦3 | 𝜽) d𝑦3 ∫
x2

x2

𝑓
(

x1, 𝑦4 | 𝜽) d𝑦4

+ m(m − 1)(m − 2)
{

F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) + F
(

x1, x2 | 𝜽)}m−3

×

{
𝑓
(

x1, x2 | 𝜽)∫ x1

x1

𝑓
(
𝑦2, x2 | 𝜽) d𝑦2 ∫

x2

x2

𝑓
(

x1, 𝑦4 | 𝜽) d𝑦4

+ 𝑓
(

x1, x2 | 𝜽)∫ x1

x1

𝑓
(
𝑦1, x2 | 𝜽) d𝑦1 ∫

x2

x2

𝑓
(

x1, 𝑦4 | 𝜽) d𝑦4

+ 𝑓
(

x1, x2 | 𝜽)∫ x1

x1

𝑓
(
𝑦2, x2 | 𝜽) d𝑦2 ∫

x2

x2

𝑓
(

x1, 𝑦3 | 𝜽) d𝑦3

+ 𝑓
(

x1, x2 | 𝜽)∫ x1

x1

𝑓
(
𝑦1, x2 | 𝜽) d𝑦1 ∫

x2

x2

𝑓
(

x1, 𝑦3 | 𝜽) d𝑦3

}
+ m(m − 1)

{
F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) − F
(

x1, x2 | 𝜽) + F
(

x1, x2 | 𝜽)}m−2

×
{
𝑓
(

x1, x2 | 𝜽) 𝑓 (x1, x2 | 𝜽) + 𝑓
(

x1, x2 | 𝜽) 𝑓 (x1, x2 | 𝜽)} .
Although it is rather complex, in fact, it has a similar intuitive interpretation to (7). The first term
denotes the case that m − 4 points fall within [x1] × [x2], whereas the remaining four points are
(𝑦1, x2), (𝑦2, x2), (x1, 𝑦3), and (x1, 𝑦4), where x1 ≤ 𝑦1, 𝑦2 ≤ x1 and x2 ≤ 𝑦3, 𝑦4 ≤ x2. The second
term represents the case that m − 3 points fall within [x1] × [x2], whereas the remaining three
points determine the boundary of the rectangle. The last terms are the case where the boundary
is formed by only two points.
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A.6 Additional plots from simulation study

FIGURE A2 As for Figure 6 in the main text, except that the true data generating process is uniform. Boxplots
of 500 replicate maximum likelihood estimates of 𝜇 and log 𝜎 under a uniform distribution with mean 𝜇 = 0 and
standard deviation 𝜎 = 2 as the true data generating process with m = 1000 and assuming data aggregation
function 𝜙i, i = 1, 50, 100, … , 450. The true aggregation functions are 𝜙1 (left two columns) and 𝜙250 (right two
columns). The models fitted are the normal (columns 1 and 3) and uniform (columns 2 and 4) distributions. In
each panel, the rightmost boxplot indicates the outcome using the data set with 5% outliers. The bottom row
shows quantile–quantile curves of the fitted model (y-axis) versus the empirical underlying data quantiles
(x-axis). Gray curves indicate use of the correct 𝜑(·) function. The dashed line denotes y = x [Colour figure can
be viewed at wileyonlinelibrary.com]
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