A composite likelihood based approach for max-stable processes using histogram-valued variables

B. Beranger

jointly with T. Whitaker and S. A. Sisson

University of New South Wales, Sydney, Australia

EVA, 26-30 June 2017

Motivation (1)

• <u>QUESTION</u>: What is the expected maximum temperature across some region within the next 50 or 100 years?

Figure: Heat wave in South East Australia (January 2017)

Motivation (2)

- What do we know?
 - Environmental extremes are spatial \Rightarrow SPATIAL EXTREMES
 - Max-stable processes are a convenient tool

Motivation (2)

- What do we know?
 - Environmental extremes are spatial \Rightarrow SPATIAL EXTREMES
 - Max-stable processes are a convenient tool
- Drawbacks and challenges?
 - $\bullet\,$ High dimensional distributions not always available, computationally costly \Rightarrow Composite likelihood (Padoan et al. 2010)
 - Unfeasible for a large number of locations and temporal observations

Motivation (2)

- What do we know?
 - Environmental extremes are spatial \Rightarrow SPATIAL EXTREMES
 - Max-stable processes are a convenient tool
- Drawbacks and challenges?
 - $\bullet\,$ High dimensional distributions not always available, computationally costly \Rightarrow Composite likelihood (Padoan et al. 2010)
 - Unfeasible for a large number of locations and temporal observations
- PROPOSAL: use Symbolic Data Analysis (SDA)

Outline

- Max-stable processes
- Composite Likelihood
- A Symbolic Data Analysis result
 - Simulation experiments
 - Real Data Analysis

Max-stable processes (1)

Definition: Let X₁, X₂,..., be i.i.d replicates of X(s), s ∈ S ⊂ ℝ^d.
 If ∃ a_n(s) > 0 and b_n(s), some continuous functions such that

$$\left\{\max_{i=1,\ldots,n}\frac{X_i(s)-b_n(s)}{a_n(s)}\right\}_{s\in\mathcal{S}}\xrightarrow{d}\left\{Y(s)\right\}_{s\in\mathcal{S}},$$

then the process Y(s) is a max-stable process with GEV margins.

• Recall that the distribution function of the GEV is given by

$$G(x; \mu, \sigma, \xi) = \exp\{-v(x; \mu, \sigma, \xi)\},\$$

where $\mu \in \mathbb{R}$, $\sigma > 0$, $\xi \in \mathbb{R}$, $\xi \in \mathbb{R}$, $v(y; \mu, \sigma, \xi) = \left(1 + \xi \frac{y - \mu}{\sigma}\right)_{+}^{-\frac{1}{\xi}}$ when $\xi \neq 0$ and $e^{-\frac{y - \mu}{\sigma}}$ otherwise, and $a_{+} = \min(0, a)$.

Max-stable processes (2)

• Spectral representation (de Haan, 1984; Schlather, 2002) \Rightarrow Max-stable models

Max-stable processes (2)

• Spectral representation (de Haan, 1984; Schlather, 2002) \Rightarrow Max-stable models

Gaussian extreme value model (Smith, 1990) defined by

$$Y(s) = \max_{1 \le i} \{\zeta_i f_d(s, t_i)\}, s \in \mathbb{R}^d$$
where $(\zeta_i, t_i)_{1 \le i}$ are the points of a point process on $(0, \infty) \times \mathbb{R}^d$, and
 $f_d = \phi_d(\cdot; \Sigma)$.
For $d = 2$, the bivariate cdf of $(Y(s_1), Y(s_2)), s_1, s_2 \in \mathbb{R}^2$ is

$$P(Y(s_1) \le y_1, Y(s_2) \le y_2) = \exp\left(-\frac{1}{v_1}\Phi\left(\frac{a}{2} + \frac{1}{a}\log\frac{v_2}{v_1}\right) - \frac{1}{v_2}\Phi\left(\frac{a}{2} + \frac{1}{a}\log\frac{v_1}{v_2}\right)\right),$$

where $v_i = \left(1 - \xi_i \frac{y_i - \mu_i}{\sigma_i}\right)^{-\frac{1}{\xi}}, i = 1, 2$ and $a^2 = (z_1 - z_2)^T \Sigma^{-1}(z_1 - z_2)$

• Let $\mathbf{X} = (X_1, \dots, X_N)$ denote a vector of N i.i.d. rv's taking values in \mathbb{R}^K with realisation $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^{K \times N}$ and density function $g_{\mathbf{X}}(\cdot; \theta)$.

- Let $\mathbf{X} = (X_1, \dots, X_N)$ denote a vector of N i.i.d. rv's taking values in \mathbb{R}^K with realisation $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^{K \times N}$ and density function $g_{\mathbf{X}}(\cdot; \theta)$.
- Define a subset of $\{1, \ldots, K\}$ by $i = (i_1, \ldots, i_j)$, where $i_1 < \cdots < i_j$ with $i_j \in \{1, \ldots, K\}$ for $j = 1, \ldots, K 1$.

- Let $\mathbf{X} = (X_1, \dots, X_N)$ denote a vector of N i.i.d. rv's taking values in \mathbb{R}^K with realisation $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^{K \times N}$ and density function $g_{\mathbf{X}}(\cdot; \theta)$.
- Define a subset of $\{1, \ldots, K\}$ by $i = (i_1, \ldots, i_j)$, where $i_1 < \cdots < i_j$ with $i_j \in \{1, \ldots, K\}$ for $j = 1, \ldots, K 1$.
- Then for n = 1, ..., N, $x_n^i \in \mathbb{R}^j$ defines a subset of x_n and $x^i = (x_1^i, ..., x_n^i) \in \mathbb{R}^{j \times N}$, defines a subset of x.

- Let $\mathbf{X} = (X_1, \dots, X_N)$ denote a vector of N i.i.d. rv's taking values in \mathbb{R}^K with realisation $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^{K \times N}$ and density function $g_{\mathbf{X}}(\cdot; \theta)$.
- Define a subset of $\{1, \ldots, K\}$ by $i = (i_1, \ldots, i_j)$, where $i_1 < \cdots < i_j$ with $i_j \in \{1, \ldots, K\}$ for $j = 1, \ldots, K 1$.
- Then for n = 1, ..., N, $x_n^i \in \mathbb{R}^j$ defines a subset of x_n and $\mathbf{x}^i = (x_1^i, ..., x_N^i) \in \mathbb{R}^{j \times N}$, defines a subset of \mathbf{x} .

The j-wise composite likelihood function, CL^(j), is given by

$$L_{CL}^{(j)}(\mathbf{x};\theta) = \prod_{\mathbf{i}} g_{\mathbf{X}^{\mathbf{i}}}(\mathbf{x}^{\mathbf{i}};\theta),$$

where $g_{\mathbf{X}^{i}}$ is a *j*-dimensional likelihood function.

• When j = 2, the *pairwise* composite log-likelihood function, $I_{CL}^{(2)}$ is given by

$$I_{CL}^{(2)}(\mathbf{x};\theta) = \sum_{i_1=1}^{K-1} \sum_{i_2=i_1+1}^{K} \log g_{\mathbf{X}^{i}}(\mathbf{x}^{i_1},\mathbf{x}^{i_2};\theta) \Rightarrow \frac{NK(K-1)}{2} \text{ terms}$$

• When j = 2, the *pairwise* composite log-likelihood function, $l_{CL}^{(2)}$ is given by

$$I_{CL}^{(2)}(\mathbf{x};\theta) = \sum_{i_1=1}^{K-1} \sum_{i_2=i_1+1}^{K} \log g_{\mathbf{X}^i}(\mathbf{x}^{i_1},\mathbf{x}^{i_2};\theta) \Rightarrow \frac{NK(K-1)}{2} \text{ terms}$$

• The resulting maximum j-wise composite likelihood estimator $\hat{\theta}_{CL}^{(j)}$ is asymptotically consistent and distributed as

$$\sqrt{N}\left(\hat{\theta}_{CL}^{(j)}-\theta\right) \rightarrow \mathcal{N}\left(0, G(\theta)^{-1}\right),$$

where $G(\theta) = H(\theta)J(\theta)^{-1}H(\theta)$, $J(\theta) = \mathbb{V}(\nabla_{CL}^{(j)} l(\theta))$ is a variability matrix and $H(\theta) = -\mathbb{E}(\nabla_{CL}^{2(j)} l(\theta))$ is a sensitivity matrix.

Symbolic likelihood function

Again let X = (X₁,..., X_N) denote a vector of N i.i.d. rv's taking values in some space D_X, with density g_X(·; θ).

Symbolic likelihood function

Again let X = (X₁,..., X_N) denote a vector of N i.i.d. rv's taking values in some space D_X, with density g_X(·; θ).

[Beranger et al. (2017)]. If X is aggregated into a symbol $S \in D_S$, the **Symbolic likelihood function** is then obtained through

 $L(s; \theta, \phi) \propto \int_{D_{\mathbf{X}}} g_{\mathbf{X}}(\mathbf{x}; \theta) f_{S|\mathbf{X}=\mathbf{x}}(s|\mathbf{x}, \phi) d\mathbf{X}$

Symbolic likelihood function

Again let X = (X₁,..., X_N) denote a vector of N i.i.d. rv's taking values in some space D_X, with density g_X(·; θ).

[Beranger et al. (2017)]. If X is aggregated into a symbol $S \in D_S$, the **Symbolic likelihood function** is then obtained through

 $L(s; \theta, \phi) \propto \int_{D_{\mathbf{X}}} g_{\mathbf{X}}(\mathbf{x}; \theta) f_{S|\mathbf{X}=\mathbf{x}}(s|\mathbf{x}, \phi) d\mathbf{X}$

• From now on S is assumed to take a histogram as value.

ACEM∫

• Let $D_X = \mathbb{R}^K$, the classical data $\mathbf{x} \in \mathbb{R}^{N \times K}$ can be aggregated into a *K*-dimensional histogram with $B^1 \times \cdots \times B^K$ bins

- Let $D_X = \mathbb{R}^K$, the classical data $\mathbf{x} \in \mathbb{R}^{N \times K}$ can be aggregated into a *K*-dimensional histogram with $B^1 \times \cdots \times B^K$ bins
- Denote the **bin index** by $b = (b_1, \ldots, b_K)$, $b_k = 1, \ldots, B^k$, $k = 1, \ldots, K$. A **bin** b is given by $\Upsilon_b = \Upsilon_{b_1}^1 \times \cdots \times \Upsilon_{b_K}^K$, where $\Upsilon_{b_k}^k = (y_{b_k}^{k} 1, y_{b_k}^{k}]$, $y_{b_k}^k \in \mathbb{R}$ are fixed

- Let $D_X = \mathbb{R}^K$, the classical data $\mathbf{x} \in \mathbb{R}^{N \times K}$ can be aggregated into a *K*-dimensional histogram with $B^1 \times \cdots \times B^K$ bins
- Denote the **bin index** by $b = (b_1, \ldots, b_K)$, $b_k = 1, \ldots, B^k$, $k = 1, \ldots, K$. A **bin** b is given by $\Upsilon_b = \Upsilon_{b_1}^1 \times \cdots \times \Upsilon_{b_K}^K$, where $\Upsilon_{b_k}^k = (y_{b_k-1}^k, y_{b_k}^k]$, $y_{b_k}^k \in \mathbb{R}$ are fixed
- $\mathbf{s} = (s_1, \dots, s_B)$ gives the observed numbers of counts in the bins $\mathbf{1} = (1, \dots, 1)$ up to $\mathbf{B} = (B^1, \dots, B^K)$. It is a vector of size $B^1 \times \dots \times B^K$, verifying $\sum_b s_b = N$.

- Let $D_X = \mathbb{R}^K$, the classical data $\mathbf{x} \in \mathbb{R}^{N \times K}$ can be aggregated into a *K*-dimensional histogram with $B^1 \times \cdots \times B^K$ bins
- Denote the **bin index** by $b = (b_1, \ldots, b_K)$, $b_k = 1, \ldots, B^k$, $k = 1, \ldots, K$. A **bin** b is given by $\Upsilon_b = \Upsilon_{b_1}^1 \times \cdots \times \Upsilon_{b_K}^K$, where $\Upsilon_{b_k}^k = (y_{b_k-1}^k, y_{b_k}^k]$, $y_{b_k}^k \in \mathbb{R}$ are fixed
- $\mathbf{s} = (s_1, \dots, s_B)$ gives the observed numbers of counts in the bins $\mathbf{1} = (1, \dots, 1)$ up to $\mathbf{B} = (B^1, \dots, B^K)$. It is a vector of size $B^1 \times \dots \times B^K$, verifying $\sum_b s_b = N$.

The histogram symbolic likelihood function is then written as

$$L(\mathbf{s}; \theta) = \frac{N!}{s_1! \dots s_B!} \prod_{b=1}^{B} P_b(\theta)^{s_b}$$

where $P_{\mathbf{b}}(\theta) = \int_{\Upsilon_{\mathbf{b}}} g_X(x; \theta) dx$. Note that g_X is a K-dim density.

• Consider we are only interested in a subset of size j of the K dimensions

- Consider we are only interested in a subset of size j of the K dimensions
- Let bⁱ be the subset of b defining the coordinates of a *j*-dimensional histogram bin and let Bⁱ = (Bⁱ¹,...,B^{ij}) be the vector of the number of marginal bins.

- Consider we are only interested in a subset of size j of the K dimensions
- Let bⁱ be the subset of b defining the coordinates of a *j*-dimensional histogram bin and let Bⁱ = (Bⁱ¹,...,B^{ij}) be the vector of the number of marginal bins.

The symbolic likelihood function associated with the vector of counts

$$\mathbf{s}_{j}^{i} = (s_{1i}^{i}, \dots, s_{Bi}^{i})$$
 of length $B^{i_{1}} \times \dots \times B^{i_{j}}$ is
 $L(\mathbf{s}_{j}^{i}; \theta) = \frac{N!}{s_{1i}^{i_{1}} \cdots s_{Bi}^{i_{j}}} \prod_{b=1}^{B^{i}} P_{bi}(\theta)^{s_{bi}^{i}},$
where $P_{bi}(\theta) = \int_{\Upsilon_{b_{i_{1}}}^{i_{1}}} \dots \int_{\Upsilon_{b_{i_{j}}}^{i_{j}}} g_{X}(x; \theta) dx$ and g_{X} is a j -dim density.

s_j = {sⁱ_{jt}; t = 1,..., T, i = (i₁,..., i_j), i₁ < ... < i_j} represents the set of j−dimensional observed histograms for the symbolic-valued random variable S_j

s_j = {sⁱ_{jt}; t = 1,..., T, i = (i₁,..., i_j), i₁ < ... < i_j} represents the set of j−dimensional observed histograms for the symbolic-valued random variable S_j

• The symbolic j-wise composite likelihood function (SCL^(j)) is given by

$$L_{SCL}^{(j)}(\mathbf{s}_j;\theta) = \prod_{t=1}^T \prod_{\mathbf{i}} L(\mathbf{s}_{jt}^{\mathbf{i}};\theta)$$

s_j = {sⁱ_{jt}; t = 1,..., T, i = (i₁,..., i_j), i₁ < ... < i_j} represents the set of j−dimensional observed histograms for the symbolic-valued random variable S_j

• The symbolic *j*-wise composite likelihood function (SCL^(j)) is given by

$$L_{SCL}^{(j)}(\mathbf{s}_{j};\theta) = \prod_{t=1}^{T} \prod_{\mathbf{i}} L(\mathbf{s}_{jt}^{\mathbf{i}};\theta)$$

• Components of the Godambe matrix are given by

$$\hat{H}(\hat{\theta}_{SCL}^{(j)}) = -\frac{1}{N} \sum_{t=1}^{T} \sum_{i} \nabla^{2} l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)})$$
$$\hat{J}(\hat{\theta}_{SCL}^{(j)}) = \frac{1}{N} \sum_{t=1}^{T} \left(\sum_{i} \nabla l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)}) \right) \left(\sum_{i} \nabla l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)}) \right)^{\top}$$

The simulation set up

- K locations are generated uniformly on a $(0,40) \times (0,40)$ grid
- N realisations of the Smith model are generated for each location
- \bullet MLE's are obtained using $CL^{(2)}$ and $SCL^{(2)}$

The simulation set up

- K locations are generated uniformly on a $(0, 40) \times (0, 40)$ grid
- N realisations of the Smith model are generated for each location
- $\bullet~\mbox{MLE's}$ are obtained using $\mbox{CL}^{(2)}$ and $\mbox{SCL}^{(2)}$

ACEM∫

Experiement 1 - Increasing the number of bins

• $N = 1000, \ K = 15, \ T = 1, \ \Sigma = \begin{bmatrix} 300 & 0 \\ 0 & 300 \end{bmatrix}$, Repetitions = 1000

Experiement 1 - Increasing the number of bins

•
$$N = 1000, \ K = 15, \ T = 1, \ \Sigma = \begin{bmatrix} 300 & 0 \\ 0 & 300 \end{bmatrix}$$
, Repetitions = 1000

Figure: Mean of MLEs for $\theta = (\sigma_{11}, \sigma_{12}, \sigma_{22}, \mu, \sigma, \xi)$ using $CL^{(2)}$ and $SCL^{(2)}$, for increasing number of bins in bivariate histograms.

B. Beranger(UNSW)

Experiement 2 - Computation time

• B = 25, K = 10, 100, T = 1, Repetitions = 10

	K = 10			K = 100		
Ν	t _c	ts	t _{hist}	t _c	ts	t _{hist}
100	9.8	18.6	0.7	9758.6	1594.5	72.3
500	27.6	26.2	0.8	45040.1	2218.8	74.2
1000	71.9	22.5	0.8	-	2238.0	78.8
5000	291.8	19.0	0.8	-	2650.2	81.7
10000	591.7	23.8	0.9	-	2356.6	85.8
50000	2626.8	24.2	1.7	-	2300.6	131.6
100000	5610.7	25.4	2.4	-	2766.9	188.2
500000	31083.1	23.2	7.5	-	3111.5	627.1

Table: Mean computation times (sec) to optimise the regular and symbolic composite likelihood (t_c and t_s), and to aggregate the data into bivariate histograms (t_{hist})

Experiment 3 - Convergence of variances (1)

• B = 25, N = 1000, K = 10, Number of repetitions = 1000

Т	σ_{11}	σ_{12}	σ_{22}	μ	σ	ξ
4	226.93	97.63	167.27	0.105	0.051	0.030
5	203.04	87.36	149.66	0.095	0.047	0.028
10	143.92	61.95	106.04	0.071	0.036	0.021
20	102.23	44.04	75.27	0.054	0.029	0.016
40	72.93	31.48	53.64	0.043	0.024	0.013
50	65.52	28.31	48.16	0.040	0.023	0.012
100	47.38	20.55	34.71	0.034	0.020	0.011
200	34.87	15.23	25.42	0.030	0.018	0.010
1000	21.12	13.08	13.11	0.025	0.016	0.010
Classic	16.65	10.53	10.69	0.020	0.014	0.009

Table: Mean variances calculated from $CL^{(2)}$ and $SCL^{(2)}$ for $\theta = (\sigma_{11}, \sigma_{12}, \sigma_{22}, \mu, \sigma, \xi)$ for increasing T.

Experiement 3 - Convergence of variances (2)

• $\hat{J}(\hat{\theta}_{SCL}^{(j)})$ requires $T \to N$ and $\mathbf{B} \to \infty$ for the convergence towards the classical Godambe matrices to occur.

Experiement 3 - Convergence of variances (2)

- $\hat{J}(\hat{\theta}_{SCL}^{(j)})$ requires $T \to N$ and $\mathbf{B} \to \infty$ for the convergence towards the classical Godambe matrices to occur.
- $\bullet\,$ For $\,{\cal T}\,$ fixed, convergence still occurs as ${\bf B} \to \infty$ towards a different expression

Figure: Mean variances calculated from $SCL^{(2)}$ for fixed T and increasing **B**.

Overview

• Maximum temperatures across Australia

Overview

- Maximum temperatures across Australia
- Data:
 - $\bullet\,$ Focus on fortnighly maxima at ${\cal K}=105$ locations over summer months
 - 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

Overview

Maximum temperatures across Australia

• Data:

- Focus on fortnighly maxima at K = 105 locations over summer months
- 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

• Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

Model fitting

• Fit the Smith model with mean and variance parameters as linear functions of space

	σ_{11}	σ_{12}	σ_{22}	ξ			
B	Historical Data						
15	176.4(0.285)	-28.7(0.032)	76.8(0.329)	-0.266(0.053)			
20	$164.2 \ (0.289)$	-29.3(0.030)	74.3(0.469)	-0.264(0.049)			
25	$162.4\ (0.217)$	-29.9(0.033)	75.3(0.284)	-0.264(0.049)			
30	161.6(0.201)	-32.3(0.029)	74.4(0.234)	-0.264(0.050)			
B	RCP4.5 Data						
15	160.9(0.942)	-34.1(0.083)	79.0 (0.222)	-0.249(0.074)			
20	$163.5\ (0.595)$	-41.1(0.073)	77.6(0.245)	-0.249(0.076)			
25	150.3(0.349)	-33.1(0.065)	70.7(0.170)	-0.250(0.073)			
30	$150.2 \ (0.150)$	-31.6(0.024)	70.7(0.154)	-0.250(0.069)			
B	RCP8.5 Data						
15	128.7(0.860)	-19.6(0.092)	67.7(0.392)	-0.232(0.061)			
20	128.0(0.630)	-19.6(0.129)	66.6(0.332)	-0.231(0.059)			
25	$136.0\ (0.395)$	-15.1 (0.093)	59.4(0.317)	-0.234(0.060)			
30	129.9(0.401)	-13.6(0.083)	56.4(0.294)	-0.233(0.055)			

Figure: MLEs using the $SCL^{(2)}$ for various values of B.

Estimated location parameter

Figure: Estimated surfaces for the location parameter using the $I_{SCL}^{(2)}$ function (left) and marginal GEV estimations (right)

B. Beranger(UNSW)

Examples of return level plots

RCP4.5 95 year maximum observed

RCP4.5 95 year return level | B = 30

Figure: Estimated 95 year return levels using the $I_{SCL}^{(2)}$ function (left) and observed 95 year return levels (right)

325

320

315

310

325

320

315

310

 Poblem: Large dimensional max-stable models present computational challenges in analysis

- Poblem: Large dimensional max-stable models present computational challenges in analysis
- Symbolic likelihoods: new tool to reduce the computational cost of composite likelihood functions

- Poblem: Large dimensional max-stable models present computational challenges in analysis
- Symbolic likelihoods: new tool to reduce the computational cost of composite likelihood functions
- The symbolic composite likelihood function presents similar asymptotic properties to that of the classical composite likelihood function

- Poblem: Large dimensional max-stable models present computational challenges in analysis
- Symbolic likelihoods: new tool to reduce the computational cost of composite likelihood functions
- The symbolic composite likelihood function presents similar asymptotic properties to that of the classical composite likelihood function

• Open questions:

- How do we choose our symbols?
- What is a sufficient *B* such that the symbolic results have converged to the classical results?

- Poblem: Large dimensional max-stable models present computational challenges in analysis
- Symbolic likelihoods: new tool to reduce the computational cost of composite likelihood functions
- The symbolic composite likelihood function presents similar asymptotic properties to that of the classical composite likelihood function
- Open questions:
 - How do we choose our symbols?
 - What is a sufficient *B* such that the symbolic results have converged to the classical results?

THANK YOU!

