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I
Motivation (1)

o QUESTION: What is the expected maximum temperature across some region
within the next 50 or 100 years?
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I
Motivation (2)

@ What do we know?
o Environmental extremes are spatial = SPATIAL EXTREMES

o Max-stable processes are a convenient tool
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o Max-stable processes are a convenient tool

@ Drawbacks and challenges?

o High dimensional distributions not always available, computationally costly
= Composite likelihood (Padoan et al. 2010)

o Unfeasible for a large number of locations and temporal observations
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Motivation (2)

@ What do we know?
o Environmental extremes are spatial = SPATIAL EXTREMES

o Max-stable processes are a convenient tool

@ Drawbacks and challenges?

o High dimensional distributions not always available, computationally costly
= Composite likelihood (Padoan et al. 2010)

o Unfeasible for a large number of locations and temporal observations

@ PROPOSAL: use Symbolic Data Analysis (SDA)
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() Max-stable processes

(O Composite Likelihood

O A Symbolic Data Analysis result
@ Simulation experiments

(O Real Data Analysis

A CL based approach for max-stable processes



Max-stable processes (1)

o Definition: Let X1, X, ..., be i.i.d replicates of X(s),s € S ¢ R’.
If 3an(s) > 0 and b,(s), some continuous functions such that

Xi(s) — bn(s) d
{i:rgéfn ) }SES — Y ()}ses

then the process Y(s) is a max-stable process with GEV margins.

@ Recall that the distribution function of the GEV is given by

G(x;p,0,8) = exp{—v(x;u,0,8)},

roje

when ¢ # 0 and

?\iACEMf

where p € R, 0 >0, €R, £ €R, v(y; p,0,8) = (14‘5%)_
+

_Y—r . .
e~ = otherwise, and a; = min(0, a).
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o e pocesses [
Max-stable processes (2)

@ Spectral representation (de Haan, 1984; Schlather, 2002) = Max-stable models
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o e pocesses [
Max-stable processes (2)

@ Spectral representation (de Haan, 1984; Schlather, 2002) = Max-stable models

ﬁaussian extreme value model (Smith, 1990) defined by \
Y(s) = maxi<; {Cifu(s, t)},s € R?
where ({, ti)1<; are the points of a point process on (0,00) x IR, and
fd = ¢d(‘; Z)
For d = 2, the bivariate cdf of (Y(s1), Y(s2)), 51,5 € R is

P(Y(s1) < y1,Y(s2) < y2) = exp (7%CD (g + % log %) - V%d) (g + % log %)) ,

were vi = (1 —f;%)7 Ji=1,2and 2> = (z1 — 2) X Nz — ) J

QACEMI

=

A CL based approach for max-stable processes June 26, 2017 6



o Compesie Likeliood |
Composite Likelihood (1)
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o Compesie Likeliood |
Composite Likelihood (1)

o Let X =(Xi,..., Xu) denote a vector of N i.i.d. rv's taking values in RX with
realisation x = (x1,...,xy) € RF*N and density function gx(-; 6).
o Define a subset of {1,...,K} by i = (i,....,/;), where i < --- < i; with

je{l,...,K}forj=1,....,K—1.
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Composite Likelihood (1)

o Let X = (Xi,..., Xu) denote a vector of N i.i.d. rv's taking values in RX with
realisation x = (xi,...,xy) € IR“*N and density function gx(-;0).
o Define a subset of {1,...,K} by i = (i,....,/;), where i < --- < i; with

je{l,...,K}forj=1,....,K—1.

© Thenforn=1,..., N, xi € IR/ defines a subset of x, and
X = (x,...,xy) € RN defines a subset of x.
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o Compesie Likeliood |
Composite Likelihood (1)

o Let X =(Xi,..., Xu) denote a vector of N i.i.d. rv's taking values in RX with
realisation x = (xi,...,xy) € IR“*N and density function gx(-;0).
o Define a subset of {1,...,K} by i = (i,....,/;), where i < --- < i; with

je{l,...,K}forj=1,....,K—1.

© Thenforn=1,..., N, xi € IR/ defines a subset of x, and
X = (x,...,xy) € RN defines a subset of x.

The j-wise composite likelihood function, CLY) | is given by
LE)(x:0) = TT; gxi(x 0),

where gyi is a j—dimensional likelihood function.

?\iACEMf
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o Compesie Likeliood |
Composite Likelihood (2)

@ When j = 2, the pairwise composite log-likelihood function, /(CQL) is given by

NK(K —
Z Z log gxi(x x1, x2; 0) = ( )terms

i1=1 hb=ih+1
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o Compesie Likeliood |
Composite Likelihood (2)

@ When j = 2, the pairwise composite log-likelihood function, /(CQL) is given by

NK(K —
Z Z log gxi(x x1, x2; 0) = ( )terms

i1=1 hb=ih+1

@ The resulting maximum j-wise composite likelihood estimator 6(/)

consistent and distributed as

VN (02) = 0) - N (0.6(0)™),

is asymptotically

where G(6) = H(0)J(0)*H(0), J(0) = V(VY)1(9)) is a variability matrix and
H(0) = —E(VQC(Z)/(Q)) is a sensitivity matrix.

QACEMI
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o i el o I
Symbolic likelihood function

o Again let X = (X1, ..., Xu) denote a vector of N i.i.d. rv's taking values in some
space Dx, with density gx(-; ).
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o i el o I
Symbolic likelihood function

o Again let X = (X1, ..., Xu) denote a vector of N i.i.d. rv's taking values in some
space Dx, with density gx(-;0).

[Beranger et al. (2017)]. If X is aggregated into a symbol S € Ds, the
Symbolic likelihood function is then obtained through

L(s;0,¢) fDx 8x(x; 0)fsx—x(s]x, p)dX
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o i el o I
Symbolic likelihood function

0 Again let X = (Xi,. ..,

space Dx, with density gx(-;0).

Xy ) denote a vector of N i.i.d. rv's taking values in some

[Beranger et al. (2017)]. If X is aggregated into a symbol S € Ds, the

Symbolic likelihood function is then obtained through

L(s;0,¢) fDx 8x(x; 0)fsx—x(s]x, p)dX

@ From now on S is assumed to take a histogram as value.

MMSE

0.000 0.005 0.010 0.015 0020 0.025 0.030

MMSE of MLE

—— Symbolic
R ---- Classic
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (1)

o Let Dx = IR¥, the classical data x € IRV*¥ can be aggregated into a
K-dimensional histogram with B* x ... x B" bins
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Histogram-valued symbols (1)

o Let Dx = IR¥, the classical data x € IRV*¥ can be aggregated into a
K-dimensional histogram with B* x ... x B" bins

© Denote the bin index by b = (b, ..., bi), by =1,...,B" k=1,...,K. Abinb
is given by T, = T}, x -+ x TfK, where Tgk = (yﬁk,l,yfjk], y[,‘k € IR are fixed
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (1)

o Let Dx = IR¥, the classical data x € IRV*¥ can be aggregated into a
K-dimensional histogram with B* x ... x B" bins

© Denote the bin index by b = (b, ..., bi), by =1,...,B" k=1,...,K. Abinb
is given by T, = T}, x -+ x TbKK, where Ték = (ybkk,l,yfjk], y[,‘k € IR are fixed

@ s = (s1,...,58) gives the observed numbers of counts in the bins 1 = (1,..., 1) up
to B = (B'.....B"). Itis a vector of size B* x --- x B¥, verifying 3°, s, = N.

The histogram symbolic likelihood function is then written as

L(s;0) = sl!.l\.l.!sB! Ht?:l Py(0)*
where Py(0) = fT gx(x; 0)dx. Note that gx is a K-dim density.

?’ACEMI
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (2)

@ Consider we are only interested in a subset of size j of the K dimensions
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Histogram-valued symbols (2)

@ Consider we are only interested in a subset of size j of the K dimensions

o Let b’ be the subset of b defining the coordinates of a j—dimensional histogram
bin and let B' = (B",. .., B') be the vector of the number of marginal bins.
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Histogram-valued symbols (2)

@ Consider we are only interested in a subset of size j of the K dimensions

o Let b’ be the subset of b defining the coordinates of a j—dimensional histogram
bin and let B' = (B",. .., B') be the vector of the number of marginal bins.

he symbolic likelihood function associated with the vector of counts
= S}y ,si:) of length B x - x Bl is

s"

L(s}i0) = 2 T P (0)°,
where Pyi(0) = f . le gx(x;0)dx and gx is a j—dim density.
1

Bi

QACEMI
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (3)

os ={sh;t=1,...,T,i=(i,....05), i <...<ij} represents the set of
Jj—dimensional observed histograms for the symbolic-valued random variable S;
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (3)

0s;={s ﬁ,t: 1,...,T,i=(h,...,0j),i <...< i} represents the set of
Jj—dimensional observed histograms for the symbolic-valued random variable S;

o The symbolic j—wise composite likelihood function (SCLY)) is given by

SCL (sj; 0 HHL je: 0
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o Asymbolic Darm Analsis et |
Histogram-valued symbols (3)

os ={sh;t=1,...,T,i=(i,....05), i <...<ij} represents the set of
Jj—dimensional observed histograms for the symbolic-valued random variable S;

o The symbolic j—wise composite likelihood function (SCLY)) is given by

SCL (sj; 0 HHL je: 0

t=1 i

o Components of the Godambe matrix are given by

"'A’((j(sg ZV (s th()sa

T T
VEREEDY (Z V(s %)) (Z V(s %))
t=1 i i \
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- uowesoss
The simulation set up

@ K locations are generated uniformly on a (0, 40) x (0, 40) grid
@ N realisations of the Smith model are generated for each location

@ MLE's are obtained using CL®) and SCL*
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The simulation set up

@ K locations are generated uniformly on a (0, 40) x (0, 40) grid

@ N realisations of the Smith model are generated for each location

@ MLE's are obtained using CL®) and SCL*
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o simaetion eperiments |
Experiement 1 - Increasing the number of bins

300 O

° N:lOOO,K:15,T:1,Z:{ 0 300

], Repetitions = 1000

A CL based approach for max-stable processes



o simaetion eperiments |
Experiement 1 - Increasing the number of bins

mean MLE

mean MLE

300 O ..
o N=1000, K=15, T =1, ¥ = , Repetitions = 1000
0 300
oy L) Location
- i S
Scale Shape Legend
R — Classic MLE
H —— Symbolic MLE
I --- Classic 95% CI
1T - Symbolic 95% ClI
b4

Mean of MLEs for 0 = (011, 012, 022, i, 0, €) using CL® and SCL®, for
increasing number of bins in bivariate histograms.
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o simaetion eperiments |
Experiement 2 - Computation time

o B=25 K=10,100, T =1, Repetitions = 10

K =10 K =100

N tc ts Ehist tc ts thist
100 9.8 18.6 | 0.7 | 9758.6 | 15945 | 72.3
500 27.6 26.2 | 0.8 | 45040.1 | 2218.8 | 74.2
1000 71.9 225 | 0.8 - 2238.0 | 78.8
5000 201.8 19.0 | 0.8 - 2650.2 | 81.7
10000 591.7 23.8 | 0.9 - 2356.6 | 85.8
50000 | 2626.8 | 24.2 | 1.7 - 2300.6 | 131.6
100000 | 5610.7 | 25.4 | 2.4 - 2766.9 | 188.2
500000 | 31083.1 | 23.2 | 7.5 - 31115 | 627.1

Mean computation times (sec) to optimise the regular and symbolic composite likelihood
(tc and ts), and to aggregate the data into bivariate histograms (tp;st)
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o smuarien eperimen:s |
Experiement 3 - Convergence of variances (1)

o B =25 N =1000, K = 10, Number of repetitions = 1000

T o1 o012 02 m o 13
4 226.93 | 97.63 | 167.27 | 0.105 | 0.051 | 0.030
5 203.04 | 87.36 | 149.66 | 0.095 | 0.047 | 0.028
10 143.92 | 61.95 | 106.04 | 0.071 | 0.036 | 0.021
20 102.23 | 44.04 75.27 0.054 | 0.029 | 0.016
40 72.93 31.48 53.64 0.043 | 0.024 | 0.013
50 65.52 28.31 48.16 0.040 | 0.023 | 0.012
100 47.38 20.55 34.71 0.034 | 0.020 | 0.011
200 34.87 15.23 25.42 0.030 | 0.018 | 0.010
1000 21.12 13.08 13.11 0.025 | 0.016 | 0.010
Classic 16.65 10.53 10.69 0.020 | 0.014 | 0.009

Mean variances calculated from CL® and SCL® for § = (011,012,022, i, 0, &) for

increasing T. N
?’ACEMI
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o smuarien eperimen:s |
Experiement 3 - Convergence of variances (2)

o f(é(sng) requires T — N and B — oo for the convergence towards the classical
Godambe matrices to occur.
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Experiement 3 - Convergence of variances (2)

o f(é(sng requires T — N and B — oo for the convergence towards the classical
Godambe matrices to occur.

o For T fixed, convergence still occurs as B — oo towards a different expression

oy Tiz -] Legend
1:31‘
. 1 g — T=5
% — T=10
N N N T=20
I - F L —— T=50 -
;-\E_ u_\\_\ \_—_ — T=200
,,,,,,,,, g T=1000
E R — A — —
5 10 15 20 25 & 10 15 20 25 5 10 15 20 25
B B B

Mean variances calculated from SCL®) for fixed T and increasing B.
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@ Maximum temperatures across Australia
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Overview

@ Maximum temperatures across Australia

o Data:

o Focus on fortnighly maxima at K = 105 locations over summer months
o 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)
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Overview

@ Maximum temperatures across Australia

o Data:

o Focus on fortnighly maxima at K = 105 locations over summer months
o 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

o Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

\
Study region QACEMJ‘
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e
Model fitting

o Fit the Smith model with mean and variance parameters as linear functions of space

J11 ‘ 712 ‘ J22 ‘ 3

Historical Data

15 | 176.4 (0.285) | -28.7 (0.032) | 76.8 (0.329) | -0.266 (0.053)

164.2 (0.289) | -29.3 (0.030) | 74.3 (0.469) | -0.264 (0.049)

25 | 162.4 (0.217) | -29.9 (0.033) | 75.3 (0.284) | -0.264 (0.049)

30 | 161.6 (0.201) | -32.3 (0.029) | 74.4 (0.234) | -0.264 (0.050)
RCP4.5 Data

15 | 160.9 (0.942) | -34.1 (0.083) | 79.0 (0.222) | -0.249 (0.074)

20 | 163.5 (0.595) | -41.1 (0.073) | 77.6 (0.245) | -0.249 (0.076)

25 | 150.3 (0.349) | -33.1 (0.065) | 70.7 (0.170) | -0.250 (0.073)

30 | 150.2 (0.150) | -31.6 (0.024) | 70.7 (0.154) | -0.250 (0.069)
RCP8.5 Data

15 | 128.7 (0.860) | -19.6 (0.092) | 67.7 (0.392) | -0.232 (0.061)

20 | 128.0 (0.630) | -19.6 (0.129) | 66.6 (0.332) | -0.231 (0.059)

25 | 136.0 (0.395) | -15.1 (0.093 | 59.4 (0.317) | -0.234 (0.060)

30 | 129.9 (0.401) | -13.6 (0.083) | 56.4 (0.294) | -0.233 (0.055)

-
MLEs using the SCL®) for various values of B. ACEM_f
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Estimated location parameter

symbolic historical trend mu | B = 30 marginal historical mu
30 30 4
8 -8
28 28
26 | 6 26 | e
2 4 2 s
22 2
2 2
20 20 4-;
T T T T T
125 130 135 140 145 125 130 135 140 145
symbolic RCP4.5 trend mu | B = 30 marginal RCP4.5 mu
30 30
8 s
28 2 -
26 | 6 26 | re
24 4 24 -4
2 24
2 b2
20 204 4-b
T T T T T
125 130 135 140 145 125 130 135 140 145

Estimated surfaces for the location parameter using the I‘(52C)L function (left) and marginal
GEV estimations (right)
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Examples of return level plots

RCP4.5 95 year return level | B = 30 RCP4.5 95 year maximum observed
30 30 |
t 325 325
28 2 |
26 - - 320 26 -| 320
24 24 -
- 315 315
2 - 22 -
20 F 310 20 . - \ A . 310
125 130 135 140 145 125 130 135 140 145
Historical 95 year return level | B = 30 Historical 95 year maximum observed
30 4 30 4
325 325
28 28 |
26 - - 320 26 | 320
2 - 2
I 315 315
2 - 2 -
20 | F 310 20 310
T T T T T T T T T T
125 130 135 140 145 125 130 135 140 145

Estimated 95 year return levels using the I§2C)L function (left) and observed 95 year return
levels (right)
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Conclusion

@ Poblem: Large dimensional max-stable models present computational challenges in
analysis
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Conclusion

@ Poblem: Large dimensional max-stable models present computational challenges in
analysis

@ Symbolic likelihoods: new tool to reduce the computational cost of composite
likelihood functions

@ The symbolic composite likelihood function presents similar asymptotic properties
to that of the classical composite likelihood function

@ Open questions:

o How do we choose our symbols?
o What is a sufficient B such that the symbolic results have converged to the
classical results?
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Conclusion

@ Poblem: Large dimensional max-stable models present computational challenges in
analysis

@ Symbolic likelihoods: new tool to reduce the computational cost of composite
likelihood functions

@ The symbolic composite likelihood function presents similar asymptotic properties
to that of the classical composite likelihood function

@ Open questions:

o How do we choose our symbols?
o What is a sufficient B such that the symbolic results have converged to the
classical results?

THANK YOU!
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