
A composite likelihood based approach for max-stable
processes using histogram-valued variables

B. Beranger

jointly with T. Whitaker and S. A. Sisson

University of New South Wales, Sydney, Australia

EVA, 26-30 June 2017

B. Beranger(UNSW) A CL based approach for max-stable processes June 26, 2017 1



Motivation (1)

QUESTION: What is the expected maximum temperature across some region
within the next 50 or 100 years?

Figure: Heat
wave in
South East
Australia
(January
2017)
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Motivation (2)

What do we know?

Environmental extremes are spatial ⇒ SPATIAL EXTREMES

Max-stable processes are a convenient tool

Drawbacks and challenges?

High dimensional distributions not always available, computationally costly
⇒ Composite likelihood (Padoan et al. 2010)

Unfeasible for a large number of locations and temporal observations

PROPOSAL: use Symbolic Data Analysis (SDA)
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Max-stable processes

Max-stable processes (1)

Definition: Let X1,X2, . . . , be i.i.d replicates of X (s), s ∈ S ⊂ IRd .

If ∃ an(s) > 0 and bn(s), some continuous functions such that{
max

i=1,...,n

Xi (s)− bn(s)

an(s)

}
s∈S

d−→ {Y (s)}s∈S ,

then the process Y (s) is a max-stable process with GEV margins.

Recall that the distribution function of the GEV is given by

G(x ;µ, σ, ξ) = exp{−v(x ;µ, σ, ξ)},

where µ ∈ IR, σ > 0, ξ ∈ IR, ξ ∈ R, v(y ;µ, σ, ξ) =
(

1 + ξ y−µ
σ

)− 1
ξ

+
when ξ 6= 0 and

e−
y−µ
σ otherwise, and a+ = min(0, a).
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Max-stable processes

Max-stable processes (2)

Spectral representation (de Haan, 1984; Schlather, 2002) ⇒ Max-stable models

'

&

$

%

Gaussian extreme value model (Smith, 1990) defined by

Y (s) = max1≤i {ζi fd(s, ti )} , s ∈ IRd

where (ζi , ti )1≤i are the points of a point process on (0,∞)× IRd , and
fd = φd(·; Σ).
For d = 2, the bivariate cdf of (Y (s1),Y (s2)), s1, s2 ∈ IR2 is

P(Y (s1) ≤ y1,Y (s2) ≤ y2) = exp
(
− 1

v1
Φ
(

a
2

+ 1
a

log v2
v1

)
− 1

v2
Φ
(

a
2

+ 1
a

log v1
v2

))
,

where vi =
(

1− ξi yi−µi
σi

)− 1
ξ
, i = 1, 2 and a2 = (z1 − z2)TΣ−1(z1 − z2)
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Composite Likelihood

Composite Likelihood (1)

Let X = (X1, . . . ,XN) denote a vector of N i.i.d. rv’s taking values in IRK with
realisation x = (x1, . . . , xN) ∈ IRK×N and density function gX(·; θ).

Define a subset of {1, . . . ,K} by i = (i1, . . . , ij), where i1 < · · · < ij with
ij ∈ {1, . . . ,K} for j = 1, . . . ,K − 1.

Then for n = 1, . . . ,N, x i
n ∈ IRj defines a subset of xn and

xi = (x i
1, . . . , x

i
N) ∈ IRj×N , defines a subset of x.�

�

�

�
The j-wise composite likelihood function, CL(j) , is given by

L
(j)
CL(x; θ) =

∏
i gXi (xi; θ),

where gXi is a j−dimensional likelihood function.
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Composite Likelihood

Composite Likelihood (2)

When j = 2 , the pairwise composite log-likelihood function, l
(2)
CL is given by

l
(2)
CL (x; θ) =

K−1∑
i1=1

K∑
i2=i1+1

log gXi (xi1 , xi2 ; θ)⇒
NK(K − 1)

2
terms

The resulting maximum j-wise composite likelihood estimator θ̂
(j)
CL is asymptotically

consistent and distributed as
√
N
(
θ̂

(j)
CL − θ

)
→ N

(
0,G(θ)−1

)
,

where G(θ) = H(θ)J(θ)−1H(θ), J(θ) = V(∇(j)
CLl(θ)) is a variability matrix and

H(θ) = −E(∇2(j)
CL l(θ)) is a sensitivity matrix.
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A Symbolic Data Analysis result

Symbolic likelihood function

Again let X = (X1, . . . ,XN) denote a vector of N i.i.d. rv’s taking values in some
space DX , with density gX(·; θ).

�

�

�

�
[Beranger et al. (2017)]. If X is aggregated into a symbol S ∈ DS , the

Symbolic likelihood function is then obtained through

L(s; θ, φ) ∝
∫
DX

gX(x; θ)fS|X=x(s|x, φ)dX

From now on S is assumed to take a histogram as value.
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A Symbolic Data Analysis result

Histogram-valued symbols (1)

Let DX = IRK , the classical data x ∈ IRN×K can be aggregated into a
K -dimensional histogram with B1 × · · · × BK bins

Denote the bin index by b = (b1, . . . , bK ), bk = 1, . . . ,Bk , k = 1, . . . ,K . A bin b
is given by Υb = Υ1

b1
× · · · ×ΥK

bK
, where Υk

bk
= (y k

bk−1, y
k
bk

], y k
bk
∈ IR are fixed

s = (s1, . . . , sB) gives the observed numbers of counts in the bins 1 = (1, . . . , 1) up
to B = (B1, . . . ,BK ). It is a vector of size B1 × · · · × BK , verifying

∑
b sb = N.

�

�

�

�

The histogram symbolic likelihood function is then written as

L(s; θ) = N!
s1!...sB!

∏B
b=1 Pb(θ)sb

where Pb(θ) =
∫

Υb
gX (x ; θ)dx . Note that gX is a K -dim density.
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A Symbolic Data Analysis result

Histogram-valued symbols (2)

Consider we are only interested in a subset of size j of the K dimensions

Let bi be the subset of b defining the coordinates of a j−dimensional histogram
bin and let Bi = (B i1 , . . . ,B ij ) be the vector of the number of marginal bins.

#

"

 

!

The symbolic likelihood function associated with the vector of counts
si
j = (s i

1i , . . . , s
i
Bi ) of length B i1 × · · · × B ij is

L(si
j ; θ) = N!

s i
1i !···s i

Bi !

∏Bi

bi=1i Pbi (θ)
s i
bi ,

where Pbi (θ) =
∫

Υ
i1
bi1

. . .
∫

Υ
ij
bij

gX (x ; θ)dx and gX is a j−dim density.
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A Symbolic Data Analysis result

Histogram-valued symbols (3)

sj = {si
jt ; t = 1, . . . ,T , i = (i1, . . . , ij), i1 < . . . < ij} represents the set of

j−dimensional observed histograms for the symbolic-valued random variable Sj

The symbolic j−wise composite likelihood function (SCL(j)) is given by

L
(j)
SCL(sj ; θ) =

T∏
t=1

∏
i

L(si
jt ; θ)

Components of the Godambe matrix are given by

Ĥ(θ̂
(j)
SCL) = − 1

N

T∑
t=1

∑
i

∇2l(si
jt ; θ̂

(j)
SCL)

Ĵ(θ̂
(j)
SCL) =

1

N

T∑
t=1

(∑
i

∇l(si
jt ; θ̂

(j)
SCL)

)(∑
i

∇l(si
jt ; θ̂

(j)
SCL)

)>
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Simulation experiments

The simulation set up

K locations are generated uniformly on a (0, 40)× (0, 40) grid

N realisations of the Smith model are generated for each location

MLE’s are obtained using CL(2) and SCL(2)
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Simulation experiments

Experiement 1 - Increasing the number of bins

N = 1000, K = 15, T = 1, Σ =

[
300 0

0 300

]
, Repetitions = 1000

Figure: Mean of MLEs for θ = (σ11, σ12, σ22, µ, σ, ξ) using CL(2) and SCL(2), for
increasing number of bins in bivariate histograms.
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Simulation experiments

Experiement 2 - Computation time

B = 25, K = 10, 100, T = 1, Repetitions = 10

K = 10 K = 100

N tc ts thist tc ts thist
100 9.8 18.6 0.7 9758.6 1594.5 72.3
500 27.6 26.2 0.8 45040.1 2218.8 74.2

1000 71.9 22.5 0.8 - 2238.0 78.8
5000 291.8 19.0 0.8 - 2650.2 81.7

10000 591.7 23.8 0.9 - 2356.6 85.8
50000 2626.8 24.2 1.7 - 2300.6 131.6

100000 5610.7 25.4 2.4 - 2766.9 188.2
500000 31083.1 23.2 7.5 - 3111.5 627.1

Table: Mean computation times (sec) to optimise the regular and symbolic composite likelihood
(tc and ts), and to aggregate the data into bivariate histograms (thist)
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Simulation experiments

Experiement 3 - Convergence of variances (1)

B = 25, N = 1000, K = 10, Number of repetitions = 1000

T σ11 σ12 σ22 µ σ ξ

4 226.93 97.63 167.27 0.105 0.051 0.030
5 203.04 87.36 149.66 0.095 0.047 0.028

10 143.92 61.95 106.04 0.071 0.036 0.021
20 102.23 44.04 75.27 0.054 0.029 0.016
40 72.93 31.48 53.64 0.043 0.024 0.013
50 65.52 28.31 48.16 0.040 0.023 0.012

100 47.38 20.55 34.71 0.034 0.020 0.011
200 34.87 15.23 25.42 0.030 0.018 0.010

1000 21.12 13.08 13.11 0.025 0.016 0.010

Classic 16.65 10.53 10.69 0.020 0.014 0.009

Table: Mean variances calculated from CL(2) and SCL(2) for θ = (σ11, σ12, σ22, µ, σ, ξ) for
increasing T .
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Simulation experiments

Experiement 3 - Convergence of variances (2)

Ĵ(θ̂
(j)
SCL) requires T → N and B→∞ for the convergence towards the classical

Godambe matrices to occur.

For T fixed, convergence still occurs as B→∞ towards a different expression

Figure: Mean variances calculated from SCL(2) for fixed T and increasing B.
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Real Data Analysis

Overview

Maximum temperatures across Australia

Data:

Focus on fortnighly maxima at K = 105 locations over summer months
3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

Figure: Study region
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Real Data Analysis

Model fitting

Fit the Smith model with mean and variance parameters as linear functions of space

Figure: MLEs using the SCL(2) for various values of B.
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Real Data Analysis

Estimated location parameter

Figure: Estimated surfaces for the location parameter using the l
(2)
SCL function (left) and marginal

GEV estimations (right)
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Real Data Analysis

Examples of return level plots

Figure: Estimated 95 year return levels using the l
(2)
SCL function (left) and observed 95 year return

levels (right)

B. Beranger(UNSW) A CL based approach for max-stable processes June 26, 2017 21



Real Data Analysis

Conclusion

Poblem: Large dimensional max-stable models present computational challenges in
analysis

Symbolic likelihoods: new tool to reduce the computational cost of composite
likelihood functions

The symbolic composite likelihood function presents similar asymptotic properties
to that of the classical composite likelihood function

Open questions:

How do we choose our symbols?
What is a sufficient B such that the symbolic results have converged to the
classical results?

THANK YOU!
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