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Motivation

• Goal: Projection of extreme events, calculation of return levels

• e.g. Climate (rainfall, wind, temperature, . . . )

• Numerous models in the literature

• Problem: Which one is the most appropriate ?
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Motivating Example (1)

Perkins et al. (2013): AR4 models (28) to investigate changes in
temperature extremes

Model evaluation based on 3 skills:

1. Means

2. PDFs

3. Tails: Observed histogram Zo is surrogate of the true density.
Tail index is

T =

n∑
i=1

Wi|Zi
o − Zi

m|

where Wi is the weight of bin i, Zo and Zm are the observed
and modeled frequencies.
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Motivating Example (2)

Drawbacks:

• Comparison of continuous models:

I Discretization ⇒ distortion of the model

• Data driven choices: bin width, bin weights, . . .

• Unsuitable for multivariate extremes

Solution: Non-parametric Kernel Density Estimators (KDE)

• Continuous and robust (less arbitrary choices, can be applied
to different datasets) ⇒ Refinement of existing method

• Works with multi-variables ⇒ Multivariate extension
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KDE (1)

How do they work?

x

D
en

si
ty

 fu
nc

tio
n

−10 −5 0 5 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

|| || | | |

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

x

D
en

si
ty

 fu
nc

tio
n

|| || | | |

6/ 17



KDE (2)

What? A KDE is given by

f̂X(x;h) =
1

n

n∑
i=1

Kh(x−Xi) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
where K = kernel and h = bandwidth.

Why?

• Not affected as much by the mass of the data

• Good overall properties (continuity, smoothness, fast cv)

Drawback: noise/bias at the boundary of the support
=⇒ Transformation to focus on the tail and reduce bumps

7/ 17



Framework for Tail Estimation

(Random sample)
X ∼ fX
⇓

(Tail sample)
X [u] ≡ X|X > u,X [u] ∈ (u,∞)

⇓
(Monotonic transformation)

Y = t(X [u]), Y ∼ fY
⇓

fX[u](x) = |t′(x)|fY (t(x))
⇓

f̂Y (y;h) = n−1
∑n

i=1Kh(y − Yi)
⇓

(Tail density estimator)
f̂X[u](x;h) = |t′(t−1(y)|f̂Y (y;h)
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Main Result

Definition 1 (Mean Integrated Square Error - MISE). For the
density estimator f̂Y , the MISE is

MISE f̂Y (·;h) = E
∫
R

[f̂Y (y;h)− f(y)]2dy.

Theorem 1 (Minimal MISE of f̂X[u]). Under suitable regularity
conditions, as n→∞,

inf
h>0

MISE f̂X[u](·;h)−
{

inf
h>0

MISE f̂Y (·;h)
}

= O(n−4/5)

In other words:

• Bandwidth selection and estimation for transformed data Y
retains same asymptotic optimality as original data X [u]

• Can use existing results/algorithms
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Simulation Study (1)

Targets (3): Fréchet, Gumbel and Generalized Pareto (GPD)

1. Generate 2000 replicates

2. Tail sample: u = 95% quantile, target tail density fX[u]

3. Transformation: t(x) = log(x− u)

4. Fit: parametric models (3), histogram and kernel

5. Iterate 400 times

6. Comparisons:

6.1 L2 distance between target and fitted densities, e.g.∫∞
u

[f̂X[u](x)− fX[u](x)]2 dx

6.2 Th and Tk: histogram and Kernel based tail indices for
u∗ = 99% quantile to avoid boundary bias at x = u affecting
model selection, e.g. T =

∫∞
u∗ |f̂X[u](x)− fX[u](x)| dx
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Simulation Study (2)
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Figure: Parametric (left) and non-parametric (right) estimators of a
Fréchet tail density.
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Simulation Study (3)
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Figure: Boxplot of the L2 distances between estimated densities and
target Fréchet density.
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Simulation Study (4)

Th Tk

Target Fréchet Gumbel GDP Fréchet Gumbel GDP

Fréchet 0.120 0.202 0.678 0.937 0 0.063
Gumbel 0.400 0.592 0.008 0.595 0.400 0.005
GPD 0.012 0.915 0.073 0.067 0.035 0.898

Table: Proportion of accepting a parametric model using histogram and
kernel based tail indices.

Remark: True model is Gumbel: T̄h = 0.361 whereas T̄k = 0.027.

13/ 17



Real Data Application (1)

• Data: Daily max temperatures in Sydney for 1911-2005
(36890 obs).

• Comparison with physical models and histogram/KDEs

• Perkins et al. (2007): Histogram as surrogate for model
densities

• Model selection:
I Th: CCMC.CESM, MPI.ESM.MR, CCMS.CMS
I Tk: MPI.ESM.MR, MIROC5, HadGEM2.CC
I Same 5 worst models
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Real Data Application (2)
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Figure: Best and worst models according to the histogram (left) and
kernel (right) based tail indices.
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Conclusion

Results:

• Model selection method for extreme values

• More robust and continuous estimator of the tail density

• Efficiency proved for univariate simulated data

• Application to temperature data

Work in progress:

• Extension of the simulations to the bivariate case

• Bivariate real data application (max and min temperatures)
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Many thanks for your attention!
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