Exploratory data analysis of extreme values using non-parametric kernel methods

Boris Beranger^{1,2}, Tarn Duong ³, Scott Sisson ²

¹Theoretical and Applied Statistics Laboratory, UPMC - Paris 6

²School of Mathematics and Statistics, UNSW, Australia

³Computer Science Laboratory, Paris-North University - Paris 13

EVA, 15th June 2015

Outline

- Motivation
- Kernel Density Estimators
- Simulation Study
- Real Data Application
- Conclusion

Motivation

- Goal: Projection of extreme events, calculation of return levels
- e.g. Climate (rainfall, wind, temperature, ...)
- Numerous models in the literature
- Problem: Which one is the most appropriate?

Motivating Example (1)

Perkins et al. (2013): AR4 models (28) to investigate changes in temperature extremes

Model evaluation based on 3 skills:

- 1. Means
- 2. PDFs
- 3. Tails: Observed histogram Z_o is surrogate of the true density. Tail index is

$$T = \sum_{i=1}^{n} W_i |Z_o^i - Z_m^i|$$

where W_i is the weight of bin i, Z_o and Z_m are the observed and modeled frequencies.

Motivating Example (2)

Drawbacks:

- Comparison of continuous models:
 - ▶ Discretization ⇒ distortion of the model
- Data driven choices: bin width, bin weights, ...
- Unsuitable for multivariate extremes

Solution: Non-parametric Kernel Density Estimators (KDE)

- Continuous and robust (less arbitrary choices, can be applied to different datasets)
 ⇒ Refinement of existing method
- Works with multi-variables ⇒ Multivariate extension

KDE (1)

How do they work?

KDE (2)

What? A KDE is given by

$$\hat{f}_X(x;h) = \frac{1}{n} \sum_{i=1}^n K_h(x - X_i) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right)$$

where K = kernel and h = bandwidth.

Why?

- Not affected as much by the mass of the data
- Good overall properties (continuity, smoothness, fast cv)

Drawback: noise/bias at the boundary of the support

⇒ Transformation to focus on the tail and reduce bumps

Framework for Tail Estimation

$$(\text{Random sample}) \\ X \sim f_X \\ \Downarrow \\ (\text{Tail sample}) \\ \boldsymbol{X}^{[u]} \equiv X|X>u, X^{[u]} \in (u,\infty) \\ \Downarrow \\ (\text{Monotonic transformation}) \\ \boldsymbol{Y} = t(X^{[u]}), \ \boldsymbol{Y} \sim f_Y \\ \Downarrow \\ f_{X^{[u]}}(x) = |t'(x)|f_Y(t(x)) \\ \Downarrow \\ \hat{f}_Y(y;h) = n^{-1} \sum_{i=1}^n K_h(y-Y_i) \\ \Downarrow \\ (\text{Tail density estimator}) \\ \hat{f}_{X^{[u]}}(x;h) = |t'(t^{-1}(y)|\hat{f}_Y(y;h)$$

Main Result

Definition 1 (Mean Integrated Square Error - MISE). For the density estimator \hat{f}_Y , the MISE is

MISE
$$\hat{f}_Y(\cdot; h) = \mathbb{E} \int_{\mathbb{R}} [\hat{f}_Y(y; h) - f(y)]^2 dy.$$

Theorem 1 (Minimal MISE of $\hat{f}_{X[u]}$). Under suitable regularity conditions, as $n \to \infty$,

$$\inf_{h>0} \operatorname{MISE} \hat{f}_{X^{[u]}}(\cdot; h) - \left\{ \inf_{h>0} \operatorname{MISE} \hat{f}_{Y}(\cdot; h) \right\} = O(n^{-4/5})$$

In other words:

- Bandwidth selection and estimation for transformed data Y retains same asymptotic optimality as original data $X^{[u]}$
- Can use existing results/algorithms

Simulation Study (1)

Targets (3): Fréchet, Gumbel and Generalized Pareto (GPD)

- 1. Generate 2000 replicates
- 2. Tail sample: u=95% quantile, target tail density $f_{X^{[u]}}$
- 3. Transformation: $t(x) = \log(x u)$
- 4. Fit: parametric models (3), histogram and kernel
- 5. Iterate 400 times
- 6. Comparisons:
 - 6.1 L_2 distance between target and fitted densities, e.g. $\int_{u}^{\infty} [\hat{f}_{X^{[u]}}(x) f_{X^{[u]}}(x)]^2 dx$
 - 6.2 T_h and T_k : histogram and Kernel based tail indices for $u^* = 99\%$ quantile to avoid boundary bias at x = u affecting model selection, e.g. $T = \int_{u^*}^{\infty} |\hat{f}_{X^{[u]}}(x) f_{X^{[u]}}(x)| \, dx$

Simulation Study (2)

Figure: Parametric (left) and non-parametric (right) estimators of a Fréchet tail density.

Simulation Study (3)

Figure: Boxplot of the L_2 distances between estimated densities and target Fréchet density.

Simulation Study (4)

		T_h			T_k	
Target	Fréchet	Gumbel	GDP	Fréchet	Gumbel	GDP
Fréchet	0.120	0.202	0.678	0.937	0	0.063
Gumbel	0.400	0.592	0.008	0.595	0.400	0.005
GPD	0.012	0.915	0.073	0.067	0.035	0.898

Table: Proportion of accepting a parametric model using histogram and kernel based tail indices.

Remark: True model is Gumbel: $\bar{T}_h = 0.361$ whereas $\bar{T}_k = 0.027$.

Real Data Application (1)

- Data: Daily max temperatures in Sydney for 1911-2005 (36890 obs).
- Comparison with physical models and histogram/KDEs
- Perkins et al. (2007): Histogram as surrogate for model densities
- Model selection:
 - $ightharpoonup T_h$: CCMC.CESM, MPI.ESM.MR, CCMS.CMS
 - ► T_k: MPI.ESM.MR, MIROC5, HadGEM2.CC
 - ► Same 5 worst models

Real Data Application (2)

Figure: Best and worst models according to the histogram (left) and kernel (right) based tail indices.

Conclusion

Results:

- Model selection method for extreme values
- More robust and continuous estimator of the tail density
- Efficiency proved for univariate simulated data
- Application to temperature data

Work in progress:

- Extension of the simulations to the bivariate case
- Bivariate real data application (max and min temperatures)

Many thanks for your attention!