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Motivation

Goal: Projection of extreme events, calculation of return levels

e.g. Climate (rainfall, wind, temperature, ...)
Numerous models in the literature

Problem: Which one is the most appropriate ?
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Motivating Example (1)

: AR4 models (28) to investigate changes in
temperature extremes

Model evaluation based on 3 skills:

1. Means
2. PDFs

3. Tails: Observed histogram Z, is surrogate of the true density.

Tail index is
T = ZW|ZZ Z |

where W; is the weight of bin i, Z, and Z,, are the observed
and modeled frequencies.
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Motivating Example (2)

Drawbacks:

e Comparison of continuous models:

» Discretization = distortion of the model

e Data driven choices: bin width, bin weights, ...

e Unsuitable for multivariate extremes

Solution: Non-parametric Kernel Density Estimators (KDE)

e Continuous and robust (less arbitrary choices, can be applied
to different datasets)

e Works with multi-variables
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KDE (1)

How do they work?
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KDE (2)

What? A KDE is given by

. 1 & 1 — - X;
fx<x;h>:n;Kh<x—Xi>=mZK(x )

=1

where K = kernel and h = bandwidth.

Why?
e Not affected as much by the mass of the data

e Good overall properties (continuity, smoothness, fast cv)

Drawback: noise/bias at the boundary of the support
— Transformation to focus on the tail and reduce bumps
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Framework for Tail Estimation

(Random sample)
X~ fx
4
(Tail sample)
X = XX > u, X" € (u,00)
\
(Monotonic transformation)
=t(XM), Y ~ fy
¢
fxta (@) = Ii(w)lfY(t(flf))
=n"' YL Kn(y = Y5)
4

~ (Tail density estimator)
Fxwah) = ¢ W) fy (g h)
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Main Result

Definition 1 (Mean Integrated Square Error - MISE). For the
density estimator /-, the MISE is

MISE fy (+h) = E / Fr (2 1) — £()]dy.

R

Theorem 1 (Minimal MISE of fX[“]). Under suitable regularity
conditions, as n — 00,

. 5 . . P _ —4/5
inf MISE fy(+h) — { inf MISE fy (h) } = O(n™"/)

In other words:

e Bandwidth selection and estimation for transformed data
retains same asymptotic optimality as original data X [*/

e Can use existing results/algorithms
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Simulation Study (1)
Targets (3): Fréchet, Gumbel and Generalized Pareto (GPD)

1. Generate 2000 replicates

2. Tail sample: u = 95% quantile, target tail density fyu
3. Transformation: t(z) = log(z — u)

4. Fit: parametric models (3), histogram and kernel

5. lterate 400 times

6. Comparisons:

6.1 Ly distance between target and fitted densities, e.g.
fuoo [fxt (2) = fxim (l’)]2 dx

6.2 Tp and Tj: histogram and Kernel based tail indices for
u* = 99% quantile to avoid boundary bias at z = u affecting
model selection, e.g. T = [ 7| fxu (z) — fxw (2)| dz
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Simulation Study (2)
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Figure: Parametric (left) and non-parametric (right) estimators of a
Fréchet tail density.
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Simulation Study (3)

Frechet

-
1
i

log(L, error)
-8

-12 -10
| |

}

T T T T T
FRE GUM GPD HIS KER

Estimator

Figure: Boxplot of the Lo distances between estimated densities and
target Fréchet density.
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Simulation Study (4)

Th Tk
Target Fréchet Gumbel GDP  Fréchet Gumbel GDP
Fréchet 0.120 0.202 0.678 0.937 0 0.063
Gumbel 0.400 0.592 0.008 0.595 0.400 0.005
GPD 0.012 0.915 0.073 0.067 0.035 0.898

Table: Proportion of accepting a parametric model using histogram and
kernel based tail indices

Remark: True model is Gumbel: T}, = 0.361 whereas T}, = 0.027.
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Real Data Application (1)

Data: Daily max temperatures in Sydney for 1911-2005
(36890 obs).

Comparison with physical models and histogram /KDEs

: Histogram as surrogate for model
densities

Model selection:
» T} CCMC.CESM, MPI.LESM.MR, CCMS.CMS
» Ti.: MPI.LESM.MR, MIROC5, HadGEM2.CC
» Same 5 worst models
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Real Data Application (2)
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Figure: Best and worst models according to the histogram (left) and
kernel (right) based tail indices.
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Conclusion

Results:
e Model selection method for extreme values
e More robust and continuous estimator of the tail density
e Efficiency proved for univariate simulated data

e Application to temperature data

Work in progress:
e Extension of the simulations to the bivariate case

e Bivariate real data application (max and min temperatures)
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Many thanks for your attention!
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