Inference for extremal-*t* and skew-*t* max-stable models in high dimensions

B. Beranger

jointly with A. G. Stephenson and S. A. Sisson

UNSW Sydney & ACEMS

CMStatistics, Pisa, 14 December 2018

Heatwave conditions on 02/01/2015:

- Adelaide 43.3C (24.5C at night)
- Melbourne 38.7C (30.0C at night)

\Rightarrow Heat health alert by Victorian government

B. Beranger(UNSW)

SYDNEY

What we know

- Spatial event by nature \Rightarrow Spatial Extremes
- Exhibit skewness
- **Max-stable models** available (Smith, Schlather, Brown-Resnick, Extremal-*t*, Extremal Skew-*t*)

What we know

- Spatial event by nature \Rightarrow Spatial Extremes
- Exhibit skewness
- Max-stable models available (Smith, Schlather, Brown-Resnick, Extremal-t, Extremal Skew-t)

Inference for max-stable processes

- Difficult for high dimensions
- Has received a lot of attention

What we know

- Spatial event by nature \Rightarrow Spatial Extremes
- Exhibit skewness
- Max-stable models available (Smith, Schlather, Brown-Resnick, Extremal-t, Extremal Skew-t)

Inference for max-stable processes

- Difficult for high dimensions
- Has received a lot of attention

Goal: Gain insights on how to do inference for flexible models in high dimensions

- Our methodology
- Simulations
- Temperature data example

Max-stable processes (1)

• X_1, X_2, \ldots , be i.i.d replicates of $X(s), s \in \mathcal{S} \subset {\rm I\!R}^k$,

$$\left\{\max_{i=1,\dots,n}\frac{X_i(s)-b_n(s)}{a_n(s)}\right\}_{s\in\mathcal{S}}\stackrel{d}{\longrightarrow} \left\{Y(s)\right\}_{s\in\mathcal{S}}$$

for some continuous functions $a_n(s) > 0$ and $b_n(s)$.

• $Y_0(s)$ be the limiting process with unit Fréchet margins

$$P\{Y_0(s_j) \le y(s_j), j \in I\} = \exp\{-V_0(y(s_j), j \in I)\}$$

where

$$V_0\{y(s_j), j \in I\} = d \int_{\mathbb{W}_d} \max_{j \in I} \left(\frac{w_j}{y(s_j)} \right) \mathrm{d}H(w).$$

(1)

Max-stable processes (2)

Theorem (Spectral representation) (e.g. Schlather, 2002)
Let
$$\{R_i\}_{i\geq 1}$$
 be the points of a Poisson process on \mathbb{R}^+ with
intensity $\xi r^{-(\xi+1)}, \xi > 0.$
 $X^+ = \max_s(0, X(s)), \mu^+(s) = \mathbb{E}[\{X^+(s)\}^{\xi}] < \infty$
 $X_i^+, i = 1, 2, ...$ be i.i.d copies of X^+ .
Then
 $Y(s) = \max_{i=1,2,...} \{R_i X_i^+(s)\} / \{\mu^+(s)\}^{1/\xi}, s \in S,$
is a max-stable process with ξ -Fréchet 1-d distributions.

The exponent function is

$$V\{y(s_j), j \in I\} = \mathbb{E}\left[\max_{j \in I} \left\{\frac{X^+(s_j)^{\xi}}{\mu^+(s_j)y(s_j)^{\xi}}\right\}\right].$$

Max-stable models

- Smith model (Smith, 1990); Schlather model (Schlather, 2002); Brown-Resnick model (Kabluchko et al., 2009);
- Extremal-*t* (Opitz, 2013) $X_i(s)$ are i.i.d. copies of a weakly stationary GP with isotropic correlation function $\rho(h)$;
- Extremal skew-t (Beranger et al., 2017) X_i(s) are i.i.d. copies of a (non-strictly stationary) skew-Normal process;

The exponent function of the extremal Skew-*t* model is $V\{y(s_j), j \in I\} = \sum_{j=1}^{d} \frac{1}{y(s_j)^{\xi}} \Psi_{d-1} \left[\{q_i, i \in I_j\}^{\top}; \overline{\Sigma}_j, \alpha_j^*, \tau_j^*, \nu + 1 \right],$ where Ψ_{d-1} is a d-1-dimensional extended skew-*t* cdf.

Composite likelihood

 \mathcal{P}_d : set of all possible partitions Π of $\{1, \ldots, d\}$.

 $|\mathcal{P}_d|$: cardinality of \mathcal{P}_d corresponds to the **d-th Bell number** \Rightarrow INTRACTABLE

Composite likelihood (Padoan et al. ,2010):

$$\operatorname{CL}_{j}(\mathbf{z}; \theta) = \prod_{q \in \mathcal{Q}_{d}^{(j)}} \left(\exp\{-V(\mathbf{z}_{q}; \theta)\} \times \sum_{\Pi \in \mathcal{P}_{q}} \prod_{k=1}^{|\Pi|} - V_{\pi_{k}}(\mathbf{z}_{q}; \theta) \right)^{w_{q}},$$

 $\mathcal{Q}_{d}^{(j)}$: set of all possible subset of size j of $\{1, \ldots, d\}$ \mathbf{z}_{q} : j-dimensional subvector of $\mathbf{z} \in \mathbb{R}^{d}_{+}$ \mathcal{P}_{q} : set of all possible partitions of q where each partition Π has elements π_{k} $V_{\pi_{k}}(\cdot)$: partial derivatives of $V(\cdot)$ w.r.t π_{k} .

j = 3: Genton et al. (2011), Huser and Davison. (2013) $j \le 13$: Castruccio et al. (2016)

Stephenson & Tawn likelihood

Time occurrences of each block maxima assumed known

ST likelihood (Stephenson and Tawn ,2005):

For each block *i* given by say \mathbf{z}^i , an observed partition Π^i is associated

$$\operatorname{ST}(\mathbf{z}; \theta) = \exp \left\{-V(\mathbf{z}; \theta)\right\} \times \prod_{k=1}^{|\Pi|} - V_{\pi_k}(\mathbf{z}; \theta).$$

Wadsworth (2015): second order bias correction \Rightarrow Requires n > d(d - 1)/2.

Huser et al. (2016): both methods can be highly biased in high dimensions.

Our methodology

Partial derivatives of Exponent function (V_{π_k})

Wadsworth and Tawn (2014):

The conditional intensity function $\lambda_{\mathbf{s}_{m+1:d}|\mathbf{s}_{1:m},\mathbf{z}_{1:m}}(\mathbf{z}_{m+1:d})$ of $\{Z(\mathbf{s}_{m+1}),\ldots,Z(\mathbf{s}_{d})\}$ given $\{Z(\mathbf{s}_{1}) = z_{1},\ldots,Z(\mathbf{s}_{m}) = z_{m}\}$ is equivalent to

$$\frac{-V_{1:d}(\mathsf{z})}{-V_{1:m}(\mathsf{z}_{1:m},\infty 1_{d-m})},$$

 \Rightarrow Recovers results for the extremal-*t* by Ribatet (2013) and Wadsworth and Tawn (2014).

Fast(er) cumulative distribution function evaluations

A **necessity** already highlighted by Wadsworth and Tawn (2014), Castruccio et al. (2016), de Fondeville and Davison (2018).

Skew-t cdf is a function of t cdf \Rightarrow quasi-Monte Carlo approximations

Idea:

- \ast Control the error on the log-scale \Rightarrow fewer Monte Carlo simulations
- * Evaluations of $\Psi_{d-m}(\cdot)$ in $V_{\pi_k}(z;\theta)$ are relatively more important than those of $\Psi_{d-1}(\cdot)$ in $V(z;\theta)$.
- * Set N_{min}: minimum number of simulations
- * Set N_{max}: maximum number of simulations

Simulation setup

- Focus on extremal-t with $\nu = 3$ (extremal skew-t coming soon!)
- *n* = 50
- d = 20, 50, 100 locations on region $\mathcal{S} = [0, 10] \times [0, 10]$
- Power exponential correlation function

$$\rho(h) = \exp\{-(\|h\|/r)^s\}, \quad r > 0, 0 < s \le 2$$

Smoothness s = 1, 1.5, 1.95 and range r = 1.5, 3, 4.5 (spatial dependence)

- *j* = 2, 3, 4, 5, 10, *d*
- log-error = 0.0001, $(N_{min}, N_{max})/10$ for $\Psi_{d-1}(\cdot)$ in $V(z; \theta)$
- 500 replicates
- Run in parallel using 16 CPUs.

Full likelihood - comparison cdf approximations - d = 50

Approx 1: $N_{min} = 100$, $N_{max} = 1000$ **Approx 2:** $N_{min} = 100$, $N_{max} = 200$

		r = 1.5	<i>r</i> = 3.0	<i>r</i> = 4.5
s = 1.00	Approx 1	0.024/0.047	0.017/0.079	0.036/0.196
	Approx 2	0.032/0.068	0.023/0.129	0.038/0.223
s = 1.50	Approx 1	0.015/0.029	0.012/0.055	0.012/0.117
	Approx 2	0.022/0.045	0.017/0.080	0.018/0.142
s = 1.95	Approx 1	0.005/0.024	0.002/0.032	0.002/0.069
	Approx 2	0.005/0.029	0.003/0.051	0.003/0.093

Table: RMSE(\hat{s}_d)/RMSE(\hat{r}_d) calculated using the full likelihood for d = 50 sites.

Note: RMSE $(\hat{\theta}) = \sqrt{b(\hat{\theta})^2 + sd(\hat{\theta})^2}$

Full likelihood - comparison cdf approximations - d = 50

Approx 1: $N_{min} = 100$, $N_{max} = 1000$ **Approx 2:** $N_{min} = 100$, $N_{max} = 200$

		r = 1.5	<i>r</i> = 3.0	<i>r</i> = 4.5
s = 1.00	$Approx_1$	8.80(6.40)	8.34(5.69)	7.38(4.89)
	$Approx_2$	1.96(1.09)	1.71(0.92)	1.56(0.86)
s = 1.50	$Approx_1$	8.82(6.09)	8.29(5.43)	7.07(4.35)
	Approx ₂	2.02(1.13)	1.68(0.91)	1.41(0.70)
s = 1.95	$Approx_1$	10.2(7.09)	7.28(4.67)	8.44(4.33)
	$Approx_2$	2.13(1.19)	1.56(0.77)	1.49(0.65)

Table: Mean (and sd) elapsed time (in minutes) calculated using the full likelihood for d = 50 sites.

Full likelihood - comparison cdf approximations - d = 100

Approx 1: $N_{min} = 100$, $N_{max} = 1000$ **Approx 2:** $N_{min} = 100$, $N_{max} = 200$

		r = 1.5	<i>r</i> = 3.0	<i>r</i> = 4.5
s = 1.00	Approx 1	0.018/0.038	0.016/0.088	0.015/0.147
	Approx 2	0.027/0.053	0.028/0.143	0.023/0.208
s = 1.50	Approx 1	0.010/0.021	0.011/0.064	0.010/0.094
	Approx 2	0.018/0.035	0.018/0.080	0.015/0.125
s = 1.95	Approx 1	0.002/0.015	0.002/0.041	0.001/0.048
	Approx 2	0.003/0.026	0.003/0.058	0.002/0.077

Table: RMSE(\hat{s}_d)/RMSE(\hat{r}_d) calculated using the full likelihood for d = 100 sites.

Note: RMSE $(\hat{\theta}) = \sqrt{b(\hat{\theta})^2 + sd(\hat{\theta})^2}$

Full likelihood - comparison cdf approximations - d = 100

Approx 1: $N_{min} = 100$, $N_{max} = 1000$ **Approx 2:** $N_{min} = 100$, $N_{max} = 200$

		r = 1.5	<i>r</i> = 3.0	<i>r</i> = 4.5
s = 1.00	$Approx_1$	14.56(10.7)	15.53(11.38)	15.63(9.84)
	$Approx_2$	5.20(3.11)	4.81(2.75)	4.44(2.29)
s = 1.50	$Approx_1$	14.33(10.55)	14.49(9.17)	12.14(7.78)
	Approx ₂	5.01(3.20)	4.57(2.43)	3.60(1.87)
s = 1.95	$Approx_1$	16.54(11.12)	15.85(8.96)	14.76(7.28)
	Approx ₂	5.08(2.71)	4.32(2.03)	3.83(1.76)

Table: Mean (and sd) elapsed time (in minutes) calculated using the full likelihood for d = 100 sites.

Composite likelihood - relative efficiencies

Relative efficiencies: $RE(r_i) = Var(r_{full}) / Var(r_i)$ $RE(s_i) = Var(s_{full}) / Var(s_i)$

Tapered such that: \sim 75 terms when d = 50, ~ 100 terms when d = 100.

	r = 1.5	r = 3.0	<i>r</i> = 4.5		r = 1.5	r = 3.0	<i>r</i> = 4.5
j = 2	27/36	21/25	24/33	j = 2	29/31	34/39	29/28
j = 3	32/29	34/30	33/37	j = 3	34/39	38/47	35/38
j = 4	43/38	48/33	48/44	j = 4	53/39	70/56	62/50
j = 5	44/40	50/34	53/42	j = 5	48/35	56/53	57/46
j = 10	66/51	56/47	61/49	<i>j</i> = 10	81/63	97/76	78/67

Table: $RE(s_i)/RE(r_i)$ for s = 1.50, d = 50 Table: $RE(s_i)/RE(r_i)$ for s = 1.50, d = 100

Temperature data (1)

Temperature maxima (extended summer August to April) in Melbourne, Victoria

Gridded - interpolated from a network of weather stations

N = 50 year period 1961–2010

d = 90 stations on a 0.15 degree (approximately 13 km) grid in a 9×10 formation

Figure: Inner Melbourne region within state of Victoria. Site locations.

ACEM∫

Temperature data (2)

Marginal parameters:

 μ, σ unconstrained $\xi = \xi_0 + \xi_E x_E + \xi_N x_N \Longrightarrow \hat{\xi}_0 = -0.14(0.01)$

$$\hat{\xi}_0 = -0.14(0.01), \ \hat{\xi}_E = 0.02(0.02), \ \hat{\xi}_N = 0.09(0.02)$$

Figure: Estimated marginal location (left) and scale (right) parameters.

\Rightarrow Marginalisation to unit-Fréchet

Estimation of the dependence structure

Two maxima belong to the same event if they occur within 3 days of each other

Fit (ST) extremal-t with $\nu = 1, \dots, 5$ \longrightarrow $\hat{\nu} = 5, \hat{s} = 1.254, \hat{r} = 8.175$

Largest distance between and two sites (in 100 km units) is 1.785 \longrightarrow smallest correlation is $\exp[-(1.785/\hat{r})^{\hat{s}}] \approx 0.86$

Summary

• It is possible to use max-stable models in high dimensions

- Even for more complex models!
- Time of occurrences should be recorded
- (Crude) Approximations of the cdf are essential
- Working on:
 - Comparison with full likelihood estimation method by Dombry et al. (2018)
 - Extremal skew-t simulations
- Looking further:
 - Are the partial derivative of the exponent function always more important than the exponent function itself?

THANK YOU!

