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Motivation

Heatwave conditions on
02/01/2015:

Adelaide 43.3C
(24.5C at night)

Melbourne 38.7C
(30.0C at night)

⇒ Heat health alert by
Victorian government
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Motivation

What we know

Spatial event by nature ⇒ Spatial Extremes

Exhibit skewness

Max-stable models available (Smith, Schlather, Brown-Resnick, Extremal-t,
Extremal Skew-t)

Inference for max-stable processes

Difficult for high dimensions

Has received a lot of attention�� ��Goal: Gain insights on how to do inference for flexible models in high dimensions
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Max-stable processes and inferential methods

Max-stable processes (1)

X1,X2, . . . , be i.i.d replicates of X (s), s ∈ S ⊂ IRk ,{
max

i=1,...,n

Xi (s)− bn(s)

an(s)

}
s∈S

d−→ {Y (s)}s∈S (1)

for some continuous functions an(s) > 0 and bn(s).

Y0(s) be the limiting process with unit Fréchet margins

P {Y0(sj) ≤ y(sj), j ∈ I} = exp {−V0(y(sj), j ∈ I )}

where

V0{y(sj), j ∈ I} = d

∫
Wd

max
j∈I

(
wj

y(sj)

)
dH(w).
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Max-stable processes and inferential methods

Max-stable processes (2)'

&

$

%

Theorem (Spectral representation) (e.g. Schlather, 2002)

Let {Ri}i≥1 be the points of a Poisson process on IR+ with

intensity ξr−(ξ+1), ξ > 0.
X+ = maxs(0,X (s)), µ+(s) = E[{X+(s)}ξ] <∞
X+

i , i = 1, 2, . . . be i.i.d copies of X+.

Then

Y (s) = maxi=1,2,...{RiX
+
i (s)}/{µ+(s)}1/ξ, s ∈ S,

is a max-stable process with ξ-Fréchet 1-d distributions.

The exponent function is

V {y(sj), j ∈ I} = E
[

max
j∈I

{
X+(sj)

ξ

µ+(sj)y(sj)ξ

}]
.
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Max-stable processes and inferential methods

Max-stable models

1 Smith model (Smith, 1990); Schlather model (Schlather, 2002); Brown-Resnick
model (Kabluchko et al., 2009);

2 Extremal-t (Opitz, 2013) Xi (s) are i.i.d. copies of a weakly stationary GP with
isotropic correlation function ρ(h);

3 Extremal skew-t (Beranger et al., 2017) Xi (s) are i.i.d. copies of a (non-strictly
stationary) skew-Normal process;�

�

�

�
The exponent function of the extremal Skew-t model is

V {y(sj), j ∈ I} =
∑d

j=1
1

y(sj )
ξ Ψd−1

[
{qi , i ∈ Ij}> ; Σ̄j , α

∗
j , τ
∗
j , ν + 1

]
,

where Ψd−1 is a d − 1-dimensional extended skew-t cdf.
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Max-stable processes and inferential methods

Composite likelihood

Pd : set of all possible partitions Π of {1, . . . , d}.

|Pd |: cardinality of Pd corresponds to the d-th Bell number ⇒ INTRACTABLE

'

&

$

%

Composite likelihood (Padoan et al. ,2010):

CLj(z; θ) =
∏

q∈Q(j)
d

(
exp{−V (zq; θ)} ×

∑
Π∈Pq

∏|Π|
k=1−Vπk (zq; θ)

)wq

,

Q(j)
d : set of all possible subset of size j of {1, . . . , d}

zq: j-dimensional subvector of z ∈ IRd
+

Pq: set of all possible partitions of q where each partition Π has elements πk

Vπk (·): partial derivatives of V (·) w.r.t πk .

j = 3: Genton et al. (2011), Huser and Davison. (2013)

j ≤ 13: Castruccio et al. (2016)
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Max-stable processes and inferential methods

Stephenson & Tawn likelihood

Time occurrences of each block maxima assumed known�

�

�

�
ST likelihood (Stephenson and Tawn ,2005):

For each block i given by say zi , an observed partition Πi is associated

ST(z; θ) = exp {−V (z; θ)} ×
∏|Π|

k=1−Vπk (z; θ).

Wadsworth (2015): second order bias correction
⇒ Requires n > d(d − 1)/2.

Huser et al. (2016): both methods can be highly biased in high dimensions.
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Our methodology

Partial derivatives of Exponent function (Vπk
)

Wadsworth and Tawn (2014):
The conditional intensity function λsm+1:d |s1:m,z1:m

(zm+1:d) of {Z(sm+1), . . . ,Z(sd)}
given {Z(s1) = z1, . . . ,Z(sm) = zm} is equivalent to

−V1:d(z)

−V1:m(z1:m,∞1d−m)
,

'

&

$

%

Lemma (Extremal skew-t model)
λt|s,v(u) = ψm

(
u◦;µt|s,v,Ωt|s,v, αt|s,v, τt|s,v, κt|s,v, νt|s,v

)
×ν−m∏m

i=1(m+(ti )u
1−ν
i )1/ν

−V1:m(z) = Ψd−m (z◦m+1:d ;µc ,Ωc , αc , τc , κc , νc)

× 2(ν−2)/2ν−m+1Γ( m+ν
2 )Ψ(α̃1:m

√
m+ν;−τ∗1:m,m+ν)

∏m
i=1(mi+z1−ν

i )1/ν

πm/2|Ω̄s|1/2(z◦>1:m Ω̄−1
1:mz◦1:m)(m+ν)/2

Φ(τ∗1:m{1+QΩ̄1:m
(α∗1:m)}−1/2)

⇒ Recovers results for the extremal-t by Ribatet (2013) and
Wadsworth and Tawn (2014).
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Our methodology

Fast(er) cumulative distribution function evaluations

A necessity already highlighted by Wadsworth and Tawn (2014),
Castruccio et al. (2016), de Fondeville and Davison (2018).

Skew-t cdf is a function of t cdf ⇒ quasi-Monte Carlo approximations

Idea:
∗ Control the error on the log-scale ⇒ fewer Monte Carlo simulations
∗ Evaluations of Ψd−m(·) in Vπk (z ; θ) are relatively more important than those

of Ψd−1(·) in V (z ; θ).
∗ Set Nmin: minimum number of simulations
∗ Set Nmax : maximum number of simulations
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Simulations

Simulation setup

Focus on extremal-t with ν = 3 (extremal skew-t coming soon!)

n = 50

d = 20, 50, 100 locations on region S = [0, 10]× [0, 10]

Power exponential correlation function

ρ(h) = exp{−(‖h‖/r)s}, r > 0, 0 < s ≤ 2

Smoothness s = 1, 1.5, 1.95 and range r = 1.5, 3, 4.5 (spatial dependence)

j = 2, 3, 4, 5, 10, d

log-error = 0.0001, (Nmin,Nmax)/10 for Ψd−1(·) in V (z ; θ)

500 replicates

Run in parallel using 16 CPUs.
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Simulations

Full likelihood - comparison cdf approximations - d = 50

Approx 1: Nmin = 100, Nmax = 1000
Approx 2: Nmin = 100, Nmax = 200

r = 1.5 r = 3.0 r = 4.5
s = 1.00 Approx 1 0.024/0.047 0.017/0.079 0.036/0.196

Approx 2 0.032/0.068 0.023/0.129 0.038/0.223
s = 1.50 Approx 1 0.015/0.029 0.012/0.055 0.012/0.117

Approx 2 0.022/0.045 0.017/0.080 0.018/0.142
s = 1.95 Approx 1 0.005/0.024 0.002/0.032 0.002/0.069

Approx 2 0.005/0.029 0.003/0.051 0.003/0.093

Table: RMSE(ŝd )/RMSE(r̂d ) calculated using the full likelihood for d = 50 sites.

Note: RMSE(θ̂) =
√

b(θ̂)2 + sd(θ̂)2
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Simulations

Full likelihood - comparison cdf approximations - d = 50

Approx 1: Nmin = 100, Nmax = 1000
Approx 2: Nmin = 100, Nmax = 200

r = 1.5 r = 3.0 r = 4.5
s = 1.00 Approx1 8.80(6.40) 8.34(5.69) 7.38(4.89)

Approx2 1.96(1.09) 1.71(0.92) 1.56(0.86)
s = 1.50 Approx1 8.82(6.09) 8.29(5.43) 7.07(4.35)

Approx2 2.02(1.13) 1.68(0.91) 1.41(0.70)
s = 1.95 Approx1 10.2(7.09) 7.28(4.67) 8.44(4.33)

Approx2 2.13(1.19) 1.56(0.77) 1.49(0.65)

Table: Mean (and sd) elapsed time (in minutes) calculated using the full likelihood for d = 50
sites.
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Simulations

Full likelihood - comparison cdf approximations - d = 100

Approx 1: Nmin = 100, Nmax = 1000
Approx 2: Nmin = 100, Nmax = 200

r = 1.5 r = 3.0 r = 4.5
s = 1.00 Approx 1 0.018/0.038 0.016/0.088 0.015/0.147

Approx 2 0.027/0.053 0.028/0.143 0.023/0.208
s = 1.50 Approx 1 0.010/0.021 0.011/0.064 0.010/0.094

Approx 2 0.018/0.035 0.018/0.080 0.015/0.125
s = 1.95 Approx 1 0.002/0.015 0.002/0.041 0.001/0.048

Approx 2 0.003/0.026 0.003/0.058 0.002/0.077

Table: RMSE(ŝd )/RMSE(r̂d ) calculated using the full likelihood for d = 100 sites.

Note: RMSE(θ̂) =
√

b(θ̂)2 + sd(θ̂)2
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Simulations

Full likelihood - comparison cdf approximations - d = 100

Approx 1: Nmin = 100, Nmax = 1000
Approx 2: Nmin = 100, Nmax = 200

r = 1.5 r = 3.0 r = 4.5
s = 1.00 Approx1 14.56(10.7) 15.53(11.38) 15.63(9.84)

Approx2 5.20(3.11) 4.81(2.75) 4.44(2.29)
s = 1.50 Approx1 14.33(10.55) 14.49(9.17) 12.14(7.78)

Approx2 5.01(3.20) 4.57(2.43) 3.60(1.87)
s = 1.95 Approx1 16.54(11.12) 15.85(8.96) 14.76(7.28)

Approx2 5.08(2.71) 4.32(2.03) 3.83(1.76)

Table: Mean (and sd) elapsed time (in minutes) calculated using the full likelihood for d = 100
sites.
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Simulations

Composite likelihood - relative efficiencies

Relative efficiencies: RE(rj) = Var(rfull) / Var(rj)
RE(sj) = Var(sfull) / Var(sj)

Tapered such that: ∼ 75 terms when d = 50,
∼ 100 terms when d = 100.

r = 1.5 r = 3.0 r = 4.5
j = 2 27/36 21/25 24/33
j = 3 32/29 34/30 33/37
j = 4 43/38 48/33 48/44
j = 5 44/40 50/34 53/42
j = 10 66/51 56/47 61/49

Table: RE(sj)/RE(rj) for s = 1.50, d = 50

r = 1.5 r = 3.0 r = 4.5
j = 2 29/31 34/39 29/28
j = 3 34/39 38/47 35/38
j = 4 53/39 70/56 62/50
j = 5 48/35 56/53 57/46
j = 10 81/63 97/76 78/67

Table: RE(sj)/RE(rj) for s = 1.50, d = 100
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Temperature data example

Temperature data (1)

Temperature maxima (extended summer August to April) in Melbourne, Victoria

Gridded – interpolated from a network of weather stations

N = 50 year period 1961–2010

d = 90 stations on a 0.15 degree (approximately 13 km) grid in a 9× 10 formation

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Figure: Inner Melbourne region within state of Victoria. Site locations.
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Temperature data example

Temperature data (2)

Marginal parameters:
µ, σ unconstrained
ξ = ξ0 + ξExE + ξNxN =⇒ ξ̂0 = −0.14(0.01), ξ̂E = 0.02(0.02), ξ̂N = 0.09(0.02)

32

34

36

38

40

1.8

2.0

2.2

2.4

Figure: Estimated marginal location (left) and scale (right) parameters.

⇒ Marginalisation to unit-Fréchet
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Temperature data example

Estimation of the dependence structure�� ��Two maxima belong to the same event if they occur within 3 days of each other

Fit (ST) extremal-t with ν = 1, . . . , 5 −→ ν̂ = 5, ŝ = 1.254, r̂ = 8.175

Largest distance between and two sites (in 100 km units) is 1.785
−→ smallest correlation is exp[−(1.785/r̂)ŝ ] ≈ 0.86

30

35

40

45

50

Figure: Simulation from
the fitted max-stable
process, conditioning on
at most three heatwave
events causing all maxima.
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Summary

Summary

It is possible to use max-stable models in high dimensions

Even for more complex models!
Time of occurrences should be recorded
(Crude) Approximations of the cdf are essential

Working on:

Comparison with full likelihood estimation method by Dombry et al. (2018)
Extremal skew-t simulations

Looking further:

Are the partial derivative of the exponent function always more important than
the exponent function itself?

THANK YOU!

B. Beranger(UNSW) Inference for MSP in high dimensions December 14, 2018 21


	Max-stable processes and inferential methods
	Our methodology
	Simulations
	Temperature data example
	Summary

