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Main idea

Standard statistical methods analyse classical datasets

E.g. x1, . . . , xn where xi ∈ X = Rd

However there is a rise of non-standard data forms:

I As a result of measurement process;

I Blood pressure recorded as (low, high) interval;

I Particulate matter recorded as counts within particle diameter
ranges i.e. histogram;
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Main idea

‘Big Data’ context:

I Symbolic data points to summarise a complex & very large dataset
in a compact manner.

S = π(X1:N) : [X ]N → S such that x1:N 7→ π(x1:N)

I Retaining maximal relevant information in original dataset.

I Collapse over data not needed in detail for analysis.

I Summarised data have own internal structure, which must be taken
into account in any analysis.⊕

Big data → small (symb) data⊕
Possible use in data privacy? Individual can’t be identified�



�
	Statistical question:

How to do statistical analysis for this form of data?
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Likelihood-based SDA (Beranger, Lin & Sisson, 2018)

The general approach:

L(S |θ, φ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

where

I L(x |θ) – standard, classical data likelihood

I g(S |x , φ) – probability of obtaining S given classical data x

I L(S |θ) – new symbolic likelihood for parameters of classical model�



�
	Gist: Fitting the standard classical model L(x |θ), when the data are

viewed only through symbols S as summaries.

As Si → xi , then g(Si |x , φ) = g(xi |x) = δxi (x) and so

L(Si |θ, φ) ∝
∫
x

δxi (x)L(x |θ)dx = L(xi |θ) (classical likelihood)

Different symbols give different forms for g(S |x , φ) (and ∴ L(S |θ, φ)).
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Specific case: Random histograms

Underlying data X1, . . . ,XN ∈ Rd ∼ g(x |θ) collected into random counts
histogram, with fixed bins B1, . . . ,BB .

Aggregation:

S = π(X1:N) : Rd×N → S = {0, . . . ,N}B1×···×Bd

such that
x1:N 7→

(∑n
i=1 I{xi ∈ B1}, . . . ,

∑n
i=1 I{xi ∈ BB}

)
.

g(S |x , φ) =

{
1 if sb observations in bin b; for each b = 1, . . . ,B
0 else

The symbolic likelihood is then (multinomial):

L(S |θ)∝
∫
x

g(S |x)
n∏

k=1

g(xk |θ)dx ∝
B∏

b=1

(∫
Bb

g(z |θ)dz

)sb

⇒ generalises univariate result of McLachlan & Jones (1988). X
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Specific case: Random histograms

I Can recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

B∏
b=1

[∫
Bb

g(z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

So recover classical analysis as we approach classical data. X

I Consistency: Can show that with a sufficient number of histogram
bins can perform analysis arbitrarily close to analysis with full
dataset.

I Some approximation of L(S |θ) to L(x |θ) depending on level of
discretisation. Work needed to quantify this.

I More complicated if data are not iid but exchangeable
(Zhang, Beranger & Sisson (2020), SJS)
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Fitting a GEV

Suppose X1, . . . ,Xn ∼ GEV(µ, σ, ξ) for large n.
Create histogram of counts s = (s1, . . . , sB).
Symbolic log-likelihood function is then

`(s|µ, σ, ξ) ∝
B∑

b=1

sb log [G (ab+1|µ, σ, ξ)− G (ab|µ, σ, ξ)]

n=1000, bins=11
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Note that `(s|µ, σ, ξ) tends to standard
likelihood as # bins gets large (so 1 or 0
observations per bin)

Computation:

I Optimisation of ` (v. quick)

I Creation of histogram s (slower)

← good fits with moderate bin numbers
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Limitations: Calculating
∫
Bb
g(z |θ)dz

Ls1 1 Ls1
L1

s1 1 L1
s1

L2
s2 1

L2
s2

1D: Probability of Xi falling in bin (Ls1 , Ls1−1] is F (Ls1 |θ)− F (Ls1−1|θ).

2D: Probability of Xi falling in bin (L
(1)
s1 , L

(1)
s1−1]× (L

(2)
s1 , L

(2)
s1−1] is

F
(
L

(1)
s1−1, L

(2)
s2−1|θ

)
− F

(
L

(1)
s1−1, L

(2)
s2
|θ
)
− F

(
L(1)
s1
, L

(2)
s2−1|θ

)
+ F

(
L(1)
s1
, L(2)

s2
|θ
)
.

d-D: Has 2d components – viable for low d .
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Limitations for histograms

For the symbolic log likelihood (using multivariate histograms)

log L(s|θ) ∝
B∑

b=1

sb log

[∫
Bb

g(z |θ)dz

]
there are some limitations:

I Multivariate histograms become inefficient as d gets large
– number of bins to cover d dimensions accurately gets large fast.

I
∫
Bb

g(z |θ)dz has 2d components for each bin
– only viable for low d .

I This means that we are limited to low-dimensional symbols.

• SDA traditionally uses 1- or 2-dimensional symbols, so maybe
this is ok;

• But in principle there will be an analysis that requires higher-D
information
So should resolve this problem if possible.

One option: Composite likelihoods.
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Spatial Extremes

I What is the maximum value that a process (Temperature) is
expected to reach over some region of interest (NSW/Australia)
within the next 20, 50 years?

I Whitaker, Beranger & Sisson (2020, Stat. Comput.)
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Modelling Australian temperature spatial extremes

I 105 spatial locations with temperature observation, over time

I Want to fit spatial model to temperature extremes.
Spatial (multivariate) information is important!

I Lots of data – can form 105-dimensional histogram(!)

I Can’t fit this using L(S |θ). What can we do?
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Modelling Australian temperature spatial extremes

I 105-dimensional histograms are completely infeasible.

I But lower-dimensional histograms could still be very informative.

I E.g. 2-dimensional.

I But how to do inference with 105×104/2 bivariate histograms?

I One answer: Composite likelihoods
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Composite likelihoods

Standard likelihood L(x |θ) where x = (x1, . . . , xd)
where e.g. xi = data at i-th spatial location.

Suppose L(x |θ) is computationally intractable except for e.g. d = 2
(as for the spatial extremes model we are using).

�

�

�

�
Then can construct (say) pairwise composite likelihood

L
(2)
CL (x |θ) ∝

∏
i

∏
j>i L(xi , xj |θ)

from all bivariate marginal events.

Works if `(xi , xj |θ) is an unbiased estimating equation for θ (as then log
likelihood is a sum of these and so is also an unbiased estimating
equation for θ). So works well for spatial models.

Similarly j-wise composite likelihoods.
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Composite likelihoods
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Behaviour of composite MLE

θ̂
(j)
CL is asymptotically (N →∞) consistent and distributed as

√
N
(
θ̂

(j)
CL − θ

)
→ N

(
0, G (j)(θ)−1

)
where

• G (j)(θ)−1 = H(j)(θ)J(j)(θ)−1H(j)(θ) is Godambe information matrix

•H(j)(θ) = −E(∇2`
(j)
CL(θ; x)) is the sensitivity matrix

•J(j)(θ) = V(∇`(j)
CL(θ; x)) is the variability matrix.

I For standard likelihoods j = d and H(θ) = J(θ) and so
G (θ) = H(θ) = I (θ) is the Fisher information matrix.

I How can this help us with L(S |θ)
when S is a 105-dimensional histogram?
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Composite symbolic likelihoods

As with L
(2)
CL (x |θ) ∝

∏
i

∏
j>i L(xi , xj |θ) we may similarly have

L
(2)
CL (S |θ) ∝

∏
i

∏
j>i

L(Sij |θ)

where Sij is the bivariate marginal histogram for dimensions (i , j).

In this setting

L(Sij |θ) ∝
∏
b

(∫
Bb

g(z1, z2|θ)dz1dz2

)sb

as before.
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Composite symbolic likelihoods
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From L(S |θ) we have (for a single histogram):

θ̂ is asymptotically consistent and distributed as
√
N
(
θ̂ − θ

)
→ N

(
0, I (θ)−1

)
when
•N →∞
• Number of bins →∞ and volume of each bin → 0

(because then L(S |θ)→ L(x |θ))

But when the bins (number and volume) are fixed then

√
N
(
θ̂ − θ

)
→ N

(
??(θ, bins), ??(θ,Bins)−1

)
.

I Currently working on non-asymptotic (in bins) distribution of MLE
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Composite symbolic likelihoods
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From L
(j)
SCL(S |θ) we have (for a single histogram):

θ̂
(j)
SCL is asymptotically consistent and distributed as

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
0, G (θ)−1

)
when
•N →∞
• Number of bins →∞ and volume of each bin → 0
(because then L

(j)
SCL(S |θ)→ L

(j)
CL(x |θ))

But when the bins (number and volume) are fixed then, as before

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
??(θ, bins), ??(θ,Bins)−1

)
.

I Similarly work in progress.
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Simulated spatial extremes
(Mean) Pairwise symbolic composite likelihood estimates (θ̂

(2)
SCL):

I Consider N = 1 000 observations at K = 15 spatial locations and
T = 1 random histogram

I Spatial dependence of Gaussian max-stable model is σ11 = 300,
σ12 = 150 and σ22 = 200

B σ11 σ12 σ22
2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2) )
3 296.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9)
5 298.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4)

10 299.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9)
15 299.5 ( 18.7) 149.8 ( 11.6) 199.8 ( 12.1)
25 299.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9)

Table: Mean (and standard errors) of the symbolic composite MLE θ̂
(2)
SCL

and composite MLE θ̂
(2)
CL

(Classic)
from 1000 replications of the Gaussian max-stable process model, for B × B histograms for varying values of B.

I As ”bins →∞” performance approaches classical composite
likelihood (also estimated the marginal parameters).

I “Acceptable” results for B = 10
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Simulated spatial extremes

(Mean) Time comparisons for increasing N

I Consider B = 25 bins, K = 10, 100 spatial locations and T = 1
random histogram. Repetitions = 10

N
K = 10 K = 100

tc ts thistDR thistR tc ts thistDR thistR
1 000 71.9 22.5 0.8 0.1 – 2 238.0 78.8 12.0
5 000 291.8 19.0 0.8 0.3 – 2 650.2 81.7 30.9

10 000 591.7 23.8 0.9 0.5 – 2 356.6 85.8 54.1
50 000 2 626.8 24.2 1.7 2.1 – 2 300.6 131.6 237.0

100 000 5 610.7 25.4 2.4 4.2 – 2 766.9 188.2 461.8
500 000 31 083.1 23.2 7.5 20.6 – 3 111.5 627.1 2 243.5

Table: Mean computation times (seconds) for different components involved in computing θ̂
(2)
CL

and θ̂
(2)
SCL

.

I Classical composite likelihood rapidly not feasible as spatial
dimensions increases (K = 20)

I Symbolic approach much more efficient
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Simulated spatial extremes

Plenty more simulations and interesting results in the paper1

I Including effect of number of histograms

I . . . and allocation of micro-data between them;

I Comparing bivariate SCL and trivariate SCL.

Now consider a different problem with ”high” dimensional histograms:
−→ logistic regression ←−

1
Whitaker T., B. Beranger and S. A. Sisson (2020). Composite likelihood methods for histogram-valued

random variables. Stat. Comput., In Press.
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Prediction of crop types from satellite images

I ∼250K pixels with 7-dimensional predictor variable x

I 7 response categories with known ground truth

I Multinomial logistic regression, but computational to fit (8+ hours)

I Can we use SDA to speed things up while maintaining prediction
quality?
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Logistic regression models

(Yi ,Xi ) pairs, Yi ∈ Ω = {1, . . . ,K} and X ∈ Rd , i = 1, . . . ,N

Want to predict category Yi given vector Xi .

'

&

$

%

One-versus-Rest logistic regression

Odds ratio linear model

log
(

P(Y=k|X )
P(Y 6=k|X )

)
= β0k + β>k X

so that

P(Y = k |X ) =
exp{β0k+β>

k X}
1+exp{β0k+β>

k X}

and so the standard classical likelihood is

L(Y ,X |β) ∝
∏N

i=1

(
P(Y = Yi |X = Xi )

∏
j∈Ω\{Yi} P(Y 6= j |X = Xi )

)
.
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Logistic regression models

(Yi ,Xi ) pairs, Yi ∈ Ω = {1, . . . ,K} and X ∈ Rd , i = 1, . . . ,N

Want to predict category Yi given vector Xi .
Construct 7-dimensional predictor histogram S j from {Xi : Yi = j}, for
each crop type j = 1, . . . , 7.

#

"

 

!

The histogram-based likelihood for S = (S1, . . . ,S7) is then

LS(S |β) ∝
∏

k∈Ω

∏
bk

(∫
Bbk

P(Y = k |X = x)dx
∏

j∈Ω\{k}∫
Bbk

P(Y 6= k|X = x)dx
)sbk

.

I Standard application of symbolic likelihood

I Can only do this integral if each category has only one predictor X .
(Will return to this shortly. . . )
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Logistic regression models
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Interesting result on existence of MLEs

Standard logistic regression:

1) β̂ = arg max L(Y ,X |β) exists and is unique if their is neither complete
nor quasi-complete separation of the data (Albert and Anderson, 1984).

Histogram-based logistic regression:

2) β̂S = arg max LS(S |β) exists and is unique if the set of histograms
(S1, . . . ,SK ) does not exhibit complete nor quasi-complete separation2

of the data (Whitaker, Beranger & Sisson, 2019; arxiv).

I 2) is stronger than 1), so 2) → 1)

I So if @β̂S ⇒ @β̂ (i.e. if ∃β̂ ⇒ ∃β̂S)

I However β̂S can exist where β̂ does not

I So can do something in SDA that you can’t with classical data3

I (Gets a bit crazy when S → X . . . as then ∃β̂S → @β̂!!)
2

For modified definitions of separation compared to Albert and Anderson (1984)
3

Not sure this is useful though!
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Logistic regression models

Recall LS(S |β) is proportional to

∏
k∈Ω

∏
bk

∫
Bbk

P(Y = k|X = x)dx
∏

j∈Ω\{k}

∫
Bbk

P(Y 6= k|X = x)dx

sbk

I This works as standard application of symbolic likelihood

I However, can only do this integral if each category has only one
predictor X .

I So either need to do d-dimensional computational integration or

I . . . abuse ideas from composite symbolic likelihoods
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Logistic regression models
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. . . Abuse ideas from composite symbolic likelihoods

• As we can integrate LS(S |β) for univariate predictor
• Construct composite likelihood over all univariate predictor likelihoods
• Or over all 2-dimensional predictor likelihoods
• Or . . . etc.

The Good:

I Gets around high-dimensional integration (1-d is particularly good)

The Bad:

I Each marginal event is not an unbiased estimating equation

I So this is not a “true” composite likelihood

I The estimates of β will be biased

I All parameters depressed β ↓ 0 (known result)
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Logistic regression models

The (partial) Fix:

I Can reduce the bias using some modifications to this composite
likelihood following ideas in a related context by Cramer (2007)

I Does not eliminate it

I However prediction can still be good if reduction in β ↓ 0 is similar
for all parameters

I This is what we found to happen in practice

30/36



Prediction of crop types from satellite images

I ∼250K pixels with 7-dimensional predictor variable x

I 7 response categories with known ground truth

I Use (modified) symbolic composite likelihood over all 1-D predictors

I (Lasso regularisation included)
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Prediction of crop types from satellite images

I Some predictors clearly identify crops even in 1-d (e.g. Bare soil)
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Prediction of crop types from satellite images

Bins
Crop type Nk 6 8 10 12 15 20 LM (X ,Y |β)

Cotton 72 450 90.5 90.6 92.8 93.6 94.0 94.1 92.2
Sorghum 66 751 74.6 74.8 75.7 76.4 76.2 76.3 80.3

Pasture Natural 27 479 75.7 75.4 76.0 76.8 77.0 77.1 77.6
Bare Soil 26 173 88.0 89.6 89.2 90.0 89.5 90.1 91.0
Peanut 17 868 81.2 81.3 81.5 81.5 81.9 81.6 82.9
Maize 12 986 9.7 9.9 10.2 10.4 10.3 10.4 14.2
Wheat 10 778 3.4 4.0 4.8 5.0 5.2 5.7 10.3
Overall 234 485 74.6 75.5 76.4 77.1 77.2 77.2 78.1

Time (secs) (164) (162) (221) (229) (276) (508) (6071)

Table: Crop specific and overall prediction accuracies (%) using univariate marginal histograms with B bins.
The likelihood optimisation times (in seconds) are reported in the last row. The full model is the standard
multinomial likelihood LM (X ,Y |β) with LASSO regularisation.

I Pretty good results with 10 bins

• Overall accuracy 76.4% (histogram) versus 78.1% (classical)
• Poorer performance for less numerous crops (wheat, maize)

I . . . and 27× faster

More simulations and details in the paper.
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Summary

Summary
I Symbolic composite likelihoods a natural extension of symbolic

likelihoods

I Can avoid likelihood integration issues for some models

I Was useful for prediction even in models for which composite
likelihoods are not suited (logistic regression)

Questions

I Other ways to avoid problematic integration in high dimensional
histograms?

I Other ways to do high-dimensional regression (general) with
symbolic likelihood?

I Etc.
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THANK YOU

Relevent Manuscripts:

I Beranger, Lin & Sisson (2018). New models for symbolic data analysis.

https://arxiv.org/abs/1809.03659

I Whitaker T., B. Beranger and S. A. Sisson (2020). Composite likelihood functions for histogram-valued

random variables. Stat. Comput., In press.

I Whitaker T., B. Beranger and S. A. Sisson (2019). Logistic regression models for aggregated data.

https://arxiv.org/abs/1912.03805

Contact:
B.Beranger@unsw.edu.au

www.borisberanger.com
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