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Rise of non-standard data forms

Standard statistical methods analyse classical datasets

E.g. x1, . . . , xn where xi ∈ X = Rp

However: Increasingly see non-standard data forms for

analysis.

Simple non-standard forms:

• Can arise as result of measurement process

• Blood pressure naturally recorded as (low, high)

interval

• Particulate matter directly recorded as counts within

particle diameter ranges i.e. histogram
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Symbolic Data Analysis

• Established by Diday & co-authors in 1990s.

• Basic unit of data is a distribution rather than usual

datapoint.
• interval (a, b)

• p-dim hyper-rectangle

• histogram

• weighted list etc.

• can be complicated by “rules”

• Classical data are special case of symbolic data:

E.g. symbolic interval s = (a, b) equivalent to

classical data point x if x = a = b.

Or histogram → {xi} as # bins →∞.

So symbolic analyses must reduce to classical

methods.
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How do symbolic data arise?

Big data → small (symb) data

Easier to analyse (hopefully!)

Possible use in data privacy?

Individual can’t be indentified.

• Can arise naturally (measurement error):

E.g. blood pressure, particulate histogram,

truncation/rounding.

• ‘Big Data’ context:

• Symbolic data points can summarise a complex & very

large dataset in a compact manner.

• Retaining maximal relevant information in original

dataset.

• Collapse over data not needed in detail for analysis.

• Summarised data have own internal structure, which

must be taken into account in any analysis.

Statistical question:

How to do statistical analysis for this form of data?

5/40



How to analyse symbolic data?

A good idea in principle, however:

• Poorly developed in terms of inferential methods.

• Current approaches:

• Descriptive statistics (means, covariances)

⇒ Methods based on 1st/2nd moments: clustering, PCA etc.

• Ad-hoc approaches (e.g. regression)

⇒ Can be plain wrong for inference/prediction.

• Single technique for constructing likelihood functions

⇒ Limited model-based inferences

• Over-prevalence of models for intervals (a, b) & assuming uniformity

⇒ Need to move beyond uniformity (Lynne Billard)

Current SDA research: Developing practical model-based (e.g. likelihood-based) procedures for

statistical inference using symbolic data for general symbols.
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Existing models for symbols (Le Rademacher & Billard, 2011)

Symbol: S = (S1, . . . ,Sd)>

For random intervals [ai , bi ], i = 1, . . . , n: Si = (ai , bi )
> or Si = (mi , log ri )

>

Then specify a standard (classical data) model for S1, . . . ,Sn. E.g.

(mi , log ri )
> ∼ N(µ,Σ)

Issues:

• Model unstable/collapses as ai → bi (classic data)

• How to fit equivalent models for classical data to symbols?

• Fit to means? How to account for variation? etc.

• Symbols are summaries of classical data, S = π(X1, . . . ,XN)

• Model can only predict symbols

• Q: How to fit models and make predictions at the level of the classical data, based on

observed symbols?
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One possible approach (Beranger, Lin & Sisson, Submitted)

Define S = π(X1:N) : [X ]N → S such that x1:N 7→ π(x1:N) then,

L(S |θ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

where

• L(x |θ) – standard, classical data likelihood

• g(S |x , φ) – explains mapping to S given classical data x

• L(S |θ) – new symbolic likelihood for parameters of classical model

Gist

Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model L(x |θ)

• g(S |x , φ) = g(S |φ) ⇒ L(S |θ) = g(S |φ)

• Directly modelling symbol = existing likelihood approach (Le Rademacher & Billard, 2011) X
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Modelling a histogram with random counts

Aggregation: S = π(X1:N) : Rd×N → S = {0, . . . ,N}B1×···×Bd

such that

x1:N 7→
(∑n

i=1 I{xi ∈ B1}, . . . ,
∑n

i=1 I{xi ∈ BB}
)

n=1000, bins=11
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• Assume some fixed bins

B1, . . . ,BB and let

s = (s1, . . . , sB)>,
∑

b sb = n

• If the Xi are iid then likelihood is

multinomial:

L(s|θ) ∝ n!

s1! . . . sB !

B∏
b=1

pb(θ)sb

where pb(θ) ∝
∫
Bb

f (z |θ)dz under

the model. X

• More complicated if data are not iid (Zhang, Beranger & Sisson, 2020)
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Modelling a histogram with random counts

• Can recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

n!

s1! . . . sB !

B∏
b=1

[∫
Db

f (z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

So recover classical analysis as we approach classical data. X

• Consistency: Can show that with a sufficient number of histogram bins can perform

analysis arbitrarily close to analysis with full dataset.

• Computationally scalable: Working with counts not computationally expensive latent data.

• Can consider histogram with random bins
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Modelling a histogram with random bins

Aggregation: S = π(X1:N) : Rd×N → S = {(a1, . . . , aB) ∈ RB : a1 ≤ · · · ≤ aB} × N such that

x1:N 7→ (x(k1), . . . , x(kB ),N) then

L(s|θ) = n!
B∏

b=1

f (sb|θ)
B+1∏
b=1

(f (sb|θ)− f (sb−1|θ))kb−kb−1−1

(kb − kb−1 − 1)!
.

• Fixed k1, . . . , kB

• When B = 2, k1 = l and k2 = u with l , u = 1, . . . , n; l 6= u

=⇒ random intervals.

• Symbolic → Classical check: if B = N =⇒ L(s|θ) = f (x |θ). X
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Fitting a GEV

n=1000, bins=11
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Mean MSE ×10−3 (1000 reps)

B µ σ ξ

5 2.977 7.675 4.091

10 1.385 1.030 0.916

20 1.278 0.762 0.682

1000 1.277 0.809 0.662

Standard 1.268 0.725 0.547

• Use R’s hist command to construct histograms, n = 1, 000

• Use fgev command in evd package for standard approach

• Accuracy increases with more bins

• Accuracy close to using full dataset with only 20 bins

(No real advantage to 1000 bins over 20)
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Fitting a GEV

Time in seconds

n 100 1K 10K 100K 1M 10M 100M

Standard 0.018 0.047 0.431 2.860 (∗) (∗) (∗)
Symbolic (total) 0.060 0.062 0.062 0.107 0.247 2.217 42.994

Symbolic (hist) 0.055 0.057 0.059 0.104 0.243 2.209 42.943

Symbolic (mle) 0.005 0.005 0.004 0.003 0.004 0.007 0.051

• Standard initially faster than symbolic for small datasets ∼ 1K

• Symbolic scales much better > 1K

• ∗ = fgev crashed on my laptop!

• However, most time for symbolic on histogram construction

• Actual symbolic optimisation super fast (obviously)

• Possible laptop caching problems around 100M

• Faster ways to construct histogram counts than hist for really large datasets (e.g.

map-reduce using DeltaRho)
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Estimating the sample mean from a 5-number summary

Individual studies report certain statistics: sample min (q0), max (q4) and quartiles (q1, q2, q3)

The interest is to estimate the sample mean and variance.

• Sample mean estimator (Luo et al., 2018):

ˆ̄xL = w1

(
q0 + q4

2

)
+ w2

(
q1 + q3

2

)
+ (1− w1 − w2)q2,

where w1 = 2.2/(2.2 + n0.75) and w2 = 0.7− 0.72/n0.55.

• Sample sd estimators (Wan et al., 2014; Shi et al., 2018):

ŝW =
1

2

(
q4 − q0

ζ(n)
+

q3 − q1

η(n)

)
, ŝS =

q4 − q0

θ1(n)
+

q3 − q1

θ2(n)
,

where ζ(n) = 2Φ−1
(

n−0.375
n+0.25

)
, η(n) = 2Φ−1

(
0.75n−0.125

n+0.25

)
,

θ1(n) = (2 + 0.14n0.6)Φ−1( n−0.375
n+0.25 ) and θ2(n) = (2 + 2

0.07n0.6 )Φ−1( 0.75n−0.125
n+0.25 ).

=⇒ Each estimator assume that the data is Normally distributed!
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Estimating the sample mean from a 5-number summary

The vector (q0, q1, q2, q3, q4) corresponds to a random bin histogram with B=4 bins.

For simplicity let n = 4Q + 1,Q ∈ N such that k = (1,Q + 1, 2Q + 1, 3Q + 1, n).

Assuming normality of the underlying data, the symbolic MLEs are

θ̂ = (µ̂, σ̂) ≈ (x̄ ,
√

(n − 1)/ns) which provide direct estimates (ˆ̄x∗, ŝ∗) = (µ̂,
√

n/(n − 1)σ̂).

Experiment:

• Generate data from Normal and Lognormal distributions

• Compare estimated and true sample values (ˆ̄x − x̄0) and (ŝ − s0)

• Average over 10, 000 replicates.

• Consider several n.
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Normally distributed data
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Figure 1: Mean difference errors for normally distributed data. Colouring indicates the SDA estimates (green),
ˆ̄xL (red), ŝW (blue) and ŝS (purple). Confidence intervals indicate ±1.96 standard errors.
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Lognormally distributed data
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Figure 2: Mean difference errors for log-normally distributed data. Colouring indicates the SDA estimates

(light and dark green), ˆ̄xL (red), ŝW (blue) and ŝS (purple). Confidence intervals indicate ±1.96 standard errors.
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Some first steps into symbol design

The efficiency of the symbolic MLEs is clearly influenced by the form and specification of the

symbol. How many bins to choose and where to put them?

Consider univariate random interval S = (sl , su, n) constructed using symmetric upper and

lower order statistics, and 2-bin random histogram by including the sample median, q2. For

sample sizes n = 4Q + 1,Q ∈ N, we have l = i , u = n + 1− i for the interval and

k = (i , 2Q + 1, n + 1− i) for the histogram.

Experiment:

• Consider i = 1, . . . , 2Q

• Draw 10, 000 datasets of size n = 21, 81 and 201 (i.e. Q = 5, 20, 50) from a N(µ0, σ0)

• Compute the rescaled symbolic MLEs (µ̂t , σ̃t) where σ̃t =
√

n/(n − 1)σ̂t
• Calculate the relative mean square errors (RMSE) defined by

RMSEµ̂ =

∑T
t=1(µ̂t − µ0)2∑T
t=1(x̄t − µ0)2

and RMSEσ̃ =

∑T
t=1(σ̃t − σ0)2∑T
t=1(st − σ0)2

,

where x̄t and st denote the sample mean and standard deviation of the t-th replicate. 22/40



Some first steps into symbol design
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Figure 3: RMSEµ̂ (left) and RMSEσ̃ (right) as a function of quantile q = (n + 1 − i)/n for

i = 1, . . . , (n + 1)/2. Grey and black lines respectively denote random intervals and histograms. Solid,

long-dashed and short-dashed lines indicate samples of size n = 21, 81 and 201 respectively.
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Spatial Extremes (Whitaker, Beranger & Sisson, 2020)

Q: What is the maximum value that a process (Temperature) is expected to reach over some

region of interest (NSW/Australia) within the next 20, 50 years?
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Spatial Extremes (Whitaker, Beranger & Sisson, 2020)

• Max-stable processes are a useful tool to analyse Spatial Extremes

• For e.g. the d.f. of the Gaussian max-stable process model

P(Y1(t) ≤ y1, . . . ,YK (t) ≤ yK ) = exp

−
K∑
j=1

1

yj
ΦK−1

(
c(j)(y); Σ(j)

)
• The d.f. of such models becomes rapidly intractable with the number of spatial locations

=⇒ Composite Likelihood methods (Padoan et al., 2010)

• Still unfeasible for a large number of locations and temporal observations!!

• K dimensional histograms?!
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Composite symbolic likelihoods

Limitations:

• Multivariate histograms become inefficient as d gets large – number of bins to cover d

dimensions accurately gets large fast.

• Calculating
∫
Bb

g(z |θ)dz : has 2d components – viable for low d .

=⇒ One option: Composite likelihoods.

Consider j = 2, i.e. pairwise composite likelihood, we have

L
(2)
SCL(S |θ) ∝

∏
i

∏
j>i

L(Sij |θ)

where Sij is the bivariate marginal histogram for dimensions (i , j) and

L(Sij |θ) ∝
∏
b

(∫
Bb

g(z1, z2|θ)dz1dz2

)sb

.
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Composite symbolic likelihoods

'

&

$

%

From L(S |θ) we have (for a single histogram):

θ̂ is asymptotically consistent and distributed as
√
N
(
θ̂ − θ

)
→ N

(
0, I (θ)−1

)
when

•N →∞
• Number of bins →∞ and volume of each bin → 0

(because then L(S |θ)→ L(x |θ))

But when the bins (number and volume) are fixed then

√
N
(
θ̂ − θ

)
→ N

(
??(θ, bins), ??(θ,Bins)−1

)
.

Currently working on non-asymptotic (in bins) distribution of MLE
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Composite symbolic likelihoods'

&
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From L
(j)
SCL(S |θ) we have (for a single histogram):

θ̂
(j)
SCL is asymptotically consistent and distributed as

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
0, G (θ)−1

)
when

•N →∞
• Number of bins →∞ and volume of each bin → 0

(because then L
(j)
SCL(S |θ)→ L

(j)
CL(x |θ))

But when the bins (number and volume) are fixed then, as before

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
??(θ, bins), ??(θ,Bins)−1

)
.

Similarly, work in progress.
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Simulated spatial extremes

(Mean) Pairwise symbolic composite likelihood estimates (θ̂
(2)
SCL):

• Consider N = 1 000 observations at K = 15 spatial locations and T = 1 random histogram

• Spatial dependence of Smith model is σ11 = 300, σ12 = 150 and σ22 = 200

B σ11 σ12 σ22
2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2) )

3 296.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9)

5 298.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4)

10 299.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9)

15 299.5 ( 18.7) 149.8 ( 11.6) 199.8 ( 12.1)

25 299.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9)

Table 1: Mean (and standard errors) of the symbolic composite MLE θ̂
(2)
SCL

and composite MLE θ̂
(2)
CL

(Classic) from 1000 replications of the Gaussian max-stable process

model, for B × B histograms for varying values of B.

• As ”bins →∞” performance approaches classical composite likelihood (also estimated the

marginal parameters).

• “Acceptable” results for B = 10
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Simulated spatial extremes

(Mean) Time comparisons for increasing N

• Consider B = 25 bins, K = 10, 100 spatial locations and T = 1 random histogram.

Repetitions = 10

N
K = 10 K = 100

tc ts thistDR thistR tc ts thistDR thistR

1 000 71.9 22.5 0.8 0.1 – 2 238.0 78.8 12.0

5 000 291.8 19.0 0.8 0.3 – 2 650.2 81.7 30.9

10 000 591.7 23.8 0.9 0.5 – 2 356.6 85.8 54.1

50 000 2 626.8 24.2 1.7 2.1 – 2 300.6 131.6 237.0

100 000 5 610.7 25.4 2.4 4.2 – 2 766.9 188.2 461.8

500 000 31 083.1 23.2 7.5 20.6 – 3 111.5 627.1 2 243.5

Table 2: Mean computation times (seconds) for different components involved in computing θ̂
(2)
CL

and θ̂
(2)
SCL

.

• Classical composite likelihood rapidly not feasible as spatial dimensions increases (K = 20)

• Symbolic approach much more efficient
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Classification

• Y ∈ Ω = {1, . . . ,K} (response), X ∈ IRD (explanatory)

• Multinomial Logistic Regression: for realisations x ∈ IRD×N , y ∈ ΩN , parameters

βββ ∈ IR(D+1)×K , the likelihood is given by

LM(x, y ;βββ) =
N∏

n=1

∏
k∈Ω

PM(Y = k|X = xn)1{yn=k},

where

PM(Y = k |X ) =
eβk0+β>k X

1 +
∑

j∈Ω\{K} e
βj0+β>j X

.

• Other model: One-vs-rest

• Prediction: Y Pred
n = arg maxk∈Ω PModel(Y = k |X = Xn), ∀n

• Prediction accuracy: PAModel = 1
N

∑N
n=1 1{Y Pred

n = Yn}
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Classification

• Let X(k) = (Xn|Yn = k , n = 1, . . . ,N) ∈ IRD×Nk

• If Nk =
∑N

n=1 1{Yn = k} is huge then X(k) can be aggregated

• Histogram-valued symbol leads to likelihood

LSM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
ΥΥΥbk

PM(Y = k|X = x)dx

)sbk

• Statistical improvement: mixture symbolic and classical contributions

• Computational improvements: Composite Likelihood (again!) but requires some

adjustment.
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Classification - Example

• Use a Supersymmetric (SUSY) benchmark dataset which consists of:

• Binary response (K = 2): signal process (which produces supersymmetric particles) vs

background process

• N = 5 million observations

• D = 18 features (8 kinematic properties, 10 functions)

• Comparison with optimal sub-sampling method (Wang et al., 2018 JASA)

• Training data: 4 500 000 obs.

• Test data: 500 000 obs.

• We consider the following:

• One-vs-Rest model

• Marginal composite likelihood

• Histogram with random bins L
(1)
OO

• Histogram with random counts L
(1)
SO
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Classification - Example

Bins

Likelihood 6 8 10 12 15 20 25

L
(1)
OO 74.9 75.9 76.6 77.7 78.1 77.9 78.1

(11.7) (14.5) (12.2) (15.0) (18.9) (21.3) (27.6)

L
(1)
SO 74.4 73.5 75.8 77.8 77.4 78.0 78.0

(13.3) (12.6) (11.5) (13.9) (16.8) (18.0) (21.4)

Table 3: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

• Wang et al. (2018) obtain a prediction accuracy of 78.2 with a computation time of 86.1

seconds.

• Simulation study: as good or better prediction accuracy, shorter computation time

• Sub-sampling will produce better MSE of the regression coefficients.
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Summary

Completely new approach to SDA:

• Based on fitting underlying (classical) model

• Radically different approach to existing SDA methods

• Views latent (classical) data through symbols

• Recovers known (some of the) existing models for symbols but is more general

• Works for more general symbols than currently in use

• Other works: internet traffic data (Rahman, Beranger & Sisson, 2020)

Still to do/Working on:

• Properties of symbolic based estimators (Prosha’s PhD thesis)

• Implement more sophisticated statistical techniques using Symbols

• Characterise impact of using symbols on accuracy

• Trade-off of accuracy vs computation

• Design of symbols for best performance

• Histogram setting: How many bins? Bin locations?
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How to design symbolic data?

(a) Regular discretisation (b) Quantile discretisation (c) Tails focused discretisation

How to design symbols to most efficiently represent dataset without (much) loss of critical

information?

E. g. Linear regression with 10 million datapoints.
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THANK YOU

Manuscripts:

• New models for symbolic data. Beranger, Lin & Sisson.

https://arxiv.org/pdf/1805.03316.pdf.

• Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger &

Sisson (2020). Stats & Computing, 30, pp.1459-1477.

• Logistic regression models using aggregated data. Whitaker, Beranger & Sisson. Whitaker,

Beranger & Sisson (2021). JCGS, in press.

Contact:

B.Beranger@unsw.edu.au
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