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What is Symbolic Data Analysis?
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Rise of non-standard data forms

Standard statistical methods analyse classical datasets

0 E.g. x1,...,x, where x; € X =RP

3
8
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However: Increasingly see non-standard data forms for
i a0 analysis.
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Simple non-standard forms:

e Can arise as result of measurement process

0.8

e Blood pressure naturally recorded as (low, high)

0.6

interval

0.4

e Particulate matter directly recorded as counts within
particle diameter ranges i.e. histogram
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Symbolic Data Analysis

e Established by Diday & co-authors in 1990s.

e Basic unit of data is a distribution rather than usual

datapoint.
e interval (a, b)

e p-dim hyper-rectangle
e histogram
e weighted list etc.

e can be complicated by “rules”

Distribution of Height and Weight

e Classical data are special case of symbolic data:

E.g. symbolic interval s = (a, b) equivalent to
classical data point x if x =a = b.
Or histogram — {x;} as # bins — occ.

® s 150 So symbolic analyses must reduce to classical

methods.
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How do symbolic data arise?

Distribution of Height and Weight

Court
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Big data — small (symb) data
Easier to analyse (hopefully!)

Possible use in data privacy?
Individual can’t be indentified.

e Can arise naturally (measurement error):

E.g.

blood pressure, particulate histogram,

truncation/rounding.

e ‘Big Data’ context:

Symbolic data points can summarise a complex & very
large dataset in a compact manner.

Retaining maximal relevant information in original
dataset.

Collapse over data not needed in detail for analysis.

Summarised data have own internal structure, which
must be taken into account in any analysis.

Statistical question:

How to do statistical analysis for this form of data?
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How to analyse symbolic data?

A good idea in principle, however:

e Poorly developed in terms of inferential methods.

e Current approaches:

e Descriptive statistics (means, covariances)
= Methods based on 1/2" moments: clustering, PCA etc.

e Ad-hoc approaches (e.g. regression)
= Can be plain wrong for inference/prediction.

e Single technique for constructing likelihood functions
= Limited model-based inferences

e Over-prevalence of models for intervals (a, b) & assuming uniformity
= Need to move beyond uniformity (Lynne Billard)

Current SDA research: Developing practical model-based (e.g. likelihood-based) procedures for

statistical inference using symbolic data for general symbols.
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Existing and new SDA models
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Existing models for symbols (Le Rademacher & Billard, 2011)

Symbol: S =(St,...,S9)T
For random intervals [a;, b;], i = 1,...,n: S; = (a;, b;)) " or S; = (m;,logr;) "
Then specify a standard (classical data) model for Sy,...,S,. E.g.

(mj,logr;) T ~ N(u,X)

Issues:

e Model unstable/collapses as a; — b; (classic data)
e How to fit equivalent models for classical data to symbols?
e Fit to means? How to account for variation? etc.
e Symbols are summaries of classical data, S = w(Xy,..., Xy)
e Model can only predict symbols
e Q: How to fit models and make predictions at the level of the classical data, based on
observed symbols?
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One pOSSible approach (Beranger, Lin & Sisson, Submitted)

Define S = m(Xy.n) : [X]V — S such that xq.y + 7(x1.n) then,

L(5]6) o /g(5|x,¢)L(x|e)dx
where

e [(x|0) — standard, classical data likelihood
e g(S|x, ¢) — explains mapping to S given classical data x
e [(5]6) — new symbolic likelihood for parameters of classical model
Gist
Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model L(x|6)

* g(SIx,¢) = g(S[#) = L(S]0) = &(Sl¢)
e Directly modelling symbol = existing likelihood approach v
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Modelling a histogram with random counts

Aggregation: S = 7(Xy.n) : RN = S =1{0,..., N}BIX'“XBd such that
X1:N (27:1 I{xi € B}, ..., 27:1 {xi € BB})
n=1000, bins=11 e Assume some fixed bins
Bi,...,Bg and let
s=(51,...,58) > psp=n
— Standard GEV .. 0 o .
=~ Symbolic GEV e If the X; are iid then likelihood is

multinomial:

L(s]0) o P ,Hpb

202z 488 where py(0) o< [, f(2|0)dz under
the model. v

0.2 0.3
L )

Density

0.1
L

0.0
L

e More complicated if data are not iid
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Modelling a histogram with random counts

Can recover classical likelihood as B — oo

Jim L(S]6) oc lim P H [/ (z]6)d. r = L(X1,...,Xn|0)

B—oo 51!

So recover classical analysis as we approach classical data. v/

e Consistency: Can show that with a sufficient number of histogram bins can perform
analysis arbitrarily close to analysis with full dataset.

Computationally scalable: Working with counts not computationally expensive latent data.

Can consider histogram with random bins
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Modelling a histogram with random bins

Aggregation: S = (Xy.n) : RN S = {(ay,...,a8) €RB :a; <--- < ag} x N such that
X1:N Fr (X(kl)a <o X(kg)s N) then

[T (leel®) = Flasalo)) =277

B
L(s|6) = n! g f(s|0) T

b=1

e Fixed ky,..., kg
e When B=2, ks =/land kb =uwith Lu=1,....n;/#u
— random intervals.

e Symbolic — Classical check: if B =N = L(s]0) = f(x|0). v
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Statistical analyses using aggregates
Fitting a GEV
Meta-analyses
Spatial Extremes

Classification
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Statistical analyses using aggregates

Fitting a GEV
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Fitting a GEV

n=1000, bins=11
Mean MSE x10~3 (1000 reps)
= g oEY & P& .
5 2977 7.675 4.091
10 1.385 1.030 0.916
20 1.278 0.762 0.682
1000 1.277 0.809 0.662
S S Standard | 1.268 0.725 0.547

0.3

Density
0.2

0.1

0.0

e Use R's hist command to construct histograms, n = 1,000
e Use fgev command in evd package for standard approach
e Accuracy increases with more bins
e Accuracy close to using full dataset with only 20 bins

(No real advantage to 1000 bins over 20)
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Fitting a GEV

Time in seconds

n | 100 1K 10K 100K 1M  10M  100M
Standard 0.018 0047 0431 2860 (x) (%) (%)

Symbolic (total) | 0.060 0.062 0.062 0.107 0.247 2217 42.994
Symbolic (hist) | 0.055 0.057 0.059 0.104 0.243 2.209 42.943
Symbolic (mle) | 0.005 0.005 0.004 0.003 0.004 0.007 0.051

e Standard initially faster than symbolic for small datasets ~ 1K

e Symbolic scales much better > 1K

e x = fgev crashed on my laptop!

e However, most time for symbolic on histogram construction

e Actual symbolic optimisation super fast (obviously)

e Possible laptop caching problems around 100M

e Faster ways to construct histogram counts than hist for really large datasets (e.g.

map-reduce using DeltaRho)
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Statistical analyses using aggregates

Meta-analyses
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Estimating the sample mean from a 5-number summary

Individual studies report certain statistics: sample min (qo), max (qs4) and quartiles (g1, g2, g3)

The interest is to estimate the sample mean and variance.

e Sample mean estimator ( ):
5 + -
% =w <% . CI4> Ao <(71 : %) F(1-m— m)g,
where wy = 2.2/(2.2 + n®"®) and wy, = 0.7 — 0.72/n%%5.
e Sample sd estimators ( ):
§W_1(CI4QO+Q3Q1> SAS:CM*QO g3 — ¢
2\ ¢(n) n(n) 01(n) ~ Oa(n)
where ((n) = 261 (2295, yn) = 207 (3529135,
01(n) = (24 0.14n%0)d=1(2=03) and 0(n) = (2 + 52ps) P 1(2225%22).

—> Each estimator assume that the data is Normally distributed!
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Estimating the sample mean from a 5-number summary

The vector (qo, 91, 92, g3, g4) corresponds to a random bin histogram with B=4 bins.

For simplicity let n =4Q + 1, Q € N such that k = (1,Q +1,2Q + 1,3Q + 1, n).

Assuming normality of the underlying data, the symbolic MLEs are
0 = (fi, ) ~ (%,/(n— 1)/ns) which provide direct estimates (X, 3.) = (2, \/n/(n — 1)).
Experiment:

e Generate data from Normal and Lognormal distributions

e Compare estimated and true sample values (x — Xo) and (5 — s0)

Average over 10,000 replicates.

Consider several n.
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Normally distributed data

Normal data, X Normal data, s
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Figure 1: Mean difference errors for normally distributed data. Colouring indicates the SDA estimates (green),
X (red), 8y (blue) and 3s (purple). Confidence intervals indicate £=1.96 standard errors.
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Lognormally distributed data

LogNormal data, X LogNormal data, s
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Figure 2: Mean difference errors for log-normally distributed data. Colouring indicates the SDA estimates
(light and dark green), X, (red), 8 (blue) and §s (purple). Confidence intervals indicate +1.96 standard errors.
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Some first steps into symbol design

The efficiency of the symbolic MLEs is clearly influenced by the form and specification of the
symbol. How many bins to choose and where to put them?

Consider univariate random interval S = (s, s,, n) constructed using symmetric upper and
lower order statistics, and 2-bin random histogram by including the sample median, g,. For
sample sizes n =4Q +1,Q € N, we have | = i,u = n+ 1 — i for the interval and

k= (i,2Q+1,n+1—i) for the histogram.

Experiment:
e Consider i=1,...,2Q
Draw 10,000 datasets of size n = 21,81 and 201 (i.e. @ = 5,20, 50) from a N(uo, 0o)
Compute the rescaled symbolic MLEs (fit, 5+) where 6 = \/n/(n —1)5;
Calculate the relative mean square errors (RMSE) defined by
RMSE;, = —Zz;l(‘? = #0f i RMSEs — —Z;I(&f o)
> o1 (Xe — 10)? t=1(St — 00)?

where X; and s; denote the sample mean and standard deviation of the t-th replicate. T



Some first steps into symbol desig

Normal data, fi Normal data, &
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Figure 3: RMSE, (left) and RMSE; (right) as a function of quantile g = (n+1 —i)/n for
i=1,...,(n+1)/2. Grey and black lines respectively denote random intervals and histograms. Solid,
long-dashed and short-dashed lines indicate samples of size n = 21,81 and 201 respectively.
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Statistical analyses using aggregates

Spatial Extremes
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Spatial Extremes (

Bureau of Meteorology, New South Wales & L 4

@BOM_NSW
Fri marks peak day for some of #NSW most heavily populated Bureau of Meteorology, Australia @ L
areas.Temps in western #Sydney well into the 40's, regional @BOM_au

western towns similar after many broke records this week, CBD
likely to have 5th consecutive day above 30 for 1st time in 8 yrs
ow.ly/E9QY50ke617 #heatwave

"Severe to extreme heatwave conditions across the southeast
interior". Temperatures exceeding 450C for many locations
through western NSW and central Australia this afternoon.
Latest at ow.ly/3W6s30nirdY

WEDNESDAY

QO 59 4:23 PM-Jan 17,2019 L] O 18 6:11 PM-Jan 17,2019 (]

Q: What is the maximum value that a process (Temperature) is expected to reach over some
region of interest (NSW/Australia) within the next 20, 50 years?

25/40



Spatial Extremes (Whitaker, Beranger & Sisson, 2020)

Max-stable processes are a useful tool to analyse Spatial Extremes

For e.g. the d.f. of the Gaussian max-stable process model

P(Ya(t) < yi,..., Yi(t) < yk) = exp Z J¢K 1(C0()):())

e The d.f. of such models becomes rapidly intractable with the number of spatial locations
— Composite Likelihood methods (Padoan et al., 2010)

Still unfeasible for a large number of locations and temporal observations!!

K dimensional histograms?!
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Composite symbolic likelihoods

Limitations:

e Multivariate histograms become inefficient as d gets large — number of bins to cover d
dimensions accurately gets large fast.

e Calculating fBb g(z|0)dz: has 29 components — viable for low d.

= One option: Composite likelihoods.

Consider j = 2, i.e. pairwise composite likelihood, we have

2
L2, (516) o TTTT L(ssle)
ij>i
where Sj; is the bivariate marginal histogram for dimensions (i, j) and

L(S5;|0) H (/B g(21,22|€)d21d22) .
b b
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Composite symbolic likelihoods

/ From L(S]0) we have (for a single histogram): \

0 is asymptotically consistent and distributed as

VN (8-0) =N (0, 1(6) ™)

when
o N — o0
e Number of bins — oo and volume of each bin — 0
(because then L(S]0) — L(x]0))

But when the bins (number and volume) are fixed then

VN <é - 9) — N (22(6, bins), 72(0, Bins) ).

Currently working on non-asymptotic (in bins) distribution of MLE
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Composite symbolic likelihoods

/ From LgéL(5|9) we have (for a single histogram): \

9(5’& is asymptotically consistent and distributed as

VN (89 —0) = N (0. 6(0) ™)

when
o N — 0

e Number of bins — co and volume of each bin — 0

K (because then L(Sjé,_(5|9) — L%)_(x\é))) /

But when the bins (number and volume) are fixed then, as before

VN (89, — 8) — N (22(0, bins), 72(6, Bins) ).

Similarly, work in progress.
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Simulated spatial extremes

(Mean) Pairwise symbolic composite likelihood estimates (é(S2C)L)

e Consider V = 1000 observations at K = 15 spatial locations and T = 1 random histogram
e Spatial dependence of Smith model is 017 = 300, o1o = 150 and o2 = 200

B o11 012 o2

2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2) )
3 206.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9)
5 208.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4)
10 209.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9)
15 209.5 ( 18.7) 149.8 ( 11.6) 199.8 (12.1)
25 200.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9)

(2)

SCL and composite MLE é(z) (Classic) from 1000 replications of the Gaussian max-stable process

Table 1: Mean (and standard errors) of the symbolic composite MLE 6 L

model, for B X B histograms for varying values of B.
e As "bins — 00" performance approaches classical composite likelihood (also estimated the
marginal parameters).
o “Acceptable” results for B =10 30/40



Simulated spatial extremes

(Mean) Time comparisons for increasing N

e Consider B = 25 bins, K = 10, 100 spatial locations and T = 1 random histogram.
Repetitions = 10

N K =10 K =100
tc ts thistbr  thistkR | tc ts thistDR thistR
1000 719 225 0.8 0.1 - 2238.0 78.8 12.0
5000 291.8 19.0 0.8 0.3 - 2650.2 81.7 30.9
10000 591.7 238 0.9 0.5 - 2356.6 85.8 54.1
50000 2626.8 24.2 1.7 2.1 - 2300.6 131.6 237.0
100000 5610.7 254 2.4 42 - 27669 188.2 461.8
500000 | 31083.1 23.2 7.5 206 | — 31115 627.1 22435

Table 2: Mean computation times (seconds) for different components involved in computing é(CzL) and é($2C>L

e Classical composite likelihood rapidly not feasible as spatial dimensions increases (K = 20)

e Symbolic approach much more efficient
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Statistical analyses using aggregates

Classification
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Classification

e YeQ={1,...,K} (response), X € IRP (explanatory)

o Multinomial Logistic Regression: for realisations x € RP*" 'y € QN, parameters
B € RPT*K  the likelihood is given by

Lu(x, v B) = H T Pu(Y = kIX = x)" =k,

n=1keQ

where -
eProtBe X

Pu(Y = k|X) = —
1 _|_ ZjeQ\{K} e/8j0+ﬁj X

e Other model: One-vs-rest
e Prediction: Y4 = arg max,cq Prodel(Y = kX = X,), Vn
e Prediction accuracy: PAMedel — L Zn LL{YPred = v}
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Classification

o Let X = (X,| Yy =k,n=1,...,N) e RP>M
If Ny = 25:1 1{Y, = k} is huge then X() can be aggregated

e Histogram-valued symbol leads to likelihood

Lsw(siB) o< [ ] 18_1 </Tb

kEQ br=1y

Sbk
PM(Y = k‘X = X)dX)

k

Statistical improvement: mixture symbolic and classical contributions

Computational improvements: Composite Likelihood (again!) but requires some

adjustment.
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Classification - Example

e Use a Supersymmetric (SUSY) benchmark dataset which consists of:
e Binary response (K = 2): signal process (which produces supersymmetric particles) vs
background process
e N =5 million observations
e D = 18 features (8 kinematic properties, 10 functions)

Comparison with optimal sub-sampling method ( )
Training data: 4500000 obs.
Test data: 500000 obs.

We consider the following:

One-vs-Rest model

Marginal composite likelihood
Histogram with random bins ng)

Histogram with random counts ng)
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Classification - Example

Bins
Likelihood 6 8 10 12 15 20 25
1N 749 759 766 777 781 779 781
(11.7)  (145) (12.2) (15.0) (18.9) (21.3) (27.6)
Ly 744 735 758 778 774 780  78.0

(133) (12.6) (115) (13.9) (16.8) (18.0) (21.4)

Table 3: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

° obtain a prediction accuracy of 78.2 with a computation time of 86.1
seconds.

e Simulation study: as good or better prediction accuracy, shorter computation time

e Sub-sampling will produce better MSE of the regression coefficients.

36/40



Conclusion
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Completely new approach to SDA:
e Based on fitting underlying (classical) model
e Radically different approach to existing SDA methods

Views latent (classical) data through symbols

e Recovers known (some of the) existing models for symbols but is more general

Works for more general symbols than currently in use
e Other works: internet traffic data ( )

Still to do/Working on:
e Properties of symbolic based estimators (Prosha's PhD thesis)
e Implement more sophisticated statistical techniques using Symbols
e Characterise impact of using symbols on accuracy
e Trade-off of accuracy vs computation
e Design of symbols for best performance

e Histogram setting: How many bins? Bin locations?
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How to design symbolic da

(a) Regular discretisation (b) Quantile discretisation (c) Tails focused discretisation

How to design symbols to most efficiently represent dataset without (much) loss of critical
information?

E. g. Linear regression with 10 million datapoints.
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THANK YOU

Manuscripts:

New models for symbolic data. Beranger, Lin & Sisson.
https://arxiv.org/pdf/1805.03316.pdf

Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger &
Sisson (2020). Stats & Computing, 30, pp.1459-1477.

Logistic regression models using aggregated data. Whitaker, Beranger & Sisson. Whitaker,
Beranger & Sisson (2021). JCGS, in press.

Contact:

B.BerangerQunsw.edu.au
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