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Motivation

Big data −→ small (symbolic) data

General statistical questions:

• How to summarise a complex & very large dataset in a compact manner while retaining

maximal relevant information in original dataset?

• How to do statistical analysis using symbolic data?

Useful for: Data storage, computational efficiency, data privatisation, data with non-standard

form

In this talk

• Large datasets are aggregated into histograms.

• Use these summaries in order to fit a logistic regression at the underlying data level.
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A possible approach to modelling aggregated data

Logistic regression using aggregates

Discussion
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One possible approach to modelling aggregated data (Beranger, Lin & Sisson, 2022)

Define S = π(X1:N) : [X ]N → S such that x1:N 7→ π(x1:N) then,

L(S |θ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

where

• L(x |θ) – standard, classical data likelihood

• g(S |x , φ) – explains mapping to S given classical data x

• L(S |θ) – new “symbolic” likelihood for parameters of classical model

Gist

Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model L(x |θ)

• g(S |x , φ) = g(S |φ) ⇒ L(S |θ) = g(S |φ)

• Directly modelling symbol = existing likelihood approach (Le Rademacher & Billard, 2011) X
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Random count histogram

Aggregation: S = π(X1:N) : Rd×N → S = {0, . . . ,N}B1×···×Bd

such that

x1:N 7→
(∑n

i=1 I{xi ∈ B1}, . . . ,
∑n

i=1 I{xi ∈ BB}
)

n=1000, bins=11
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• Assume some fixed bins

B1, . . . ,BB and let

s = (s1, . . . , sB)>,
∑

b sb = n

• If the Xi are iid then likelihood is

multinomial:

L(s|θ) ∝ n!

s1! . . . sB !

B∏
b=1

pb(θ)sb

where pb(θ) ∝
∫
Bb

f (z |θ)dz under

the model. X

• More complicated if data are not iid (Zhang, Beranger & Sisson, 2020)
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Random count histogram

• Can recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

n!

s1! . . . sB !

B∏
b=1

[∫
Db

f (z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

So recover classical analysis as we approach classical data. X

• Consistency: Can show that with a sufficient number of histogram bins can perform

analysis arbitrarily close to analysis with full dataset.

• Computationally scalable: Working with counts not computationally expensive latent data.
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Random bin histogram

Aggregation: S = π(X1:N) : Rd×N → S = {(a1, . . . , aB) ∈ RB : a1 ≤ · · · ≤ aB} × N such that

x1:N 7→ (x(k1), . . . , x(kB ),N) then

L(s|θ) = n!
B∏

b=1

f (sb|θ)
B+1∏
b=1

(F (sb|θ)− F (sb−1|θ))kb−kb−1−1

(kb − kb−1 − 1)!
.

• Fixed k1, . . . , kB

• When B = 2, k1 = l and k2 = u with l , u = 1, . . . , n; l 6= u

=⇒ random intervals.

• Symbolic → Classical check: if B = N =⇒ L(s|θ) = f (x |θ). X
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A possible approach to modelling aggregated data

Logistic regression using aggregates

Discussion
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Classification - classical data

Y ∈ Ω = {1, . . . ,K} (response), X ∈ IRD (explanatory)'
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Multinomial Logistic Regression

Consider realisations x ∈ IRD×N , y ∈ ΩN , parameters βββ ∈ IR(D+1)×K .

The standard classical likelihood is given by

LM(x, y ;βββ) =
∏N

n=1

∏
k∈Ω PM(Y = k|X = xn)1{yn=k},

where

PM(Y = k |X ) = eβk0+β>k X

1+
∑

j∈Ω\{K} e
βj0+β>

j
X
.

Other model: One-vs-Rest logistic regression.

Prediction: Y Pred
n = arg maxk∈Ω PModel(Y = k |X = Xn), ∀n

Prediction accuracy: PAModel = 1
N

∑N
n=1 1{Y Pred

n = Yn} 9/24



Classification - aggregated data

• Let X(k) = (Xn|Yn = k , n = 1, . . . ,N) ∈ IRD×Nk

• If Nk =
∑N

n=1 1{Yn = k} is huge then X(k) can be aggregated

• Histogram-valued symbol leads to likelihood

LSM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
ΥΥΥbk

PM(Y = k|X = x)dx

)sbk

• Statistical improvement: mixture symbolic and classical contributions

• Computational improvements: Can the above integral be easily computed? =⇒ Composite

Likelihood (based on Whitaker, Beranger & Sisson, 2020) but requires some adjustment.
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Classification - aggregated data
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Interesting result on existence of MLEs

Standard logistic regression:

1) β̂ = arg max L(Y ,X |β) exists and is unique if their is neither complete

nor quasi-complete separation of the data (Albert and Anderson, 1984).

Histogram-based logistic regression:

2) β̂S = arg max LS(S |β) exists and is unique if the set of histograms

(S1, . . . ,SK ) does not exhibit complete nor quasi-complete separation1

of the data (Whitaker, Beranger & Sisson, 2021).

• 2) is stronger than 1), so 2) → 1)

• So if @β̂S ⇒ @β̂ (i.e. if ∃β̂ ⇒ ∃β̂S)

• However β̂S can exist where β̂ does not

• So can do something in SDA that you can’t with classical data (Is this useful?)
1For modified definitions of separation compared to Albert and Anderson (1984)
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Classification - aggregated data

Likelihood evaluation requires to compute∫
ΥΥΥbk

PM(Y = k |X = x)dx

Our options:

1. Need to do d-dimensional computational integration

2. . . . abuse ideas from composite symbolic likelihoods

• We can integrate LS(S |β) for univariate predictor;

• Construct composite likelihood over all univariate predictor likelihoods;

• Or over all 2-dimensional predictor likelihoods, etc.

The Good:

• Gets around high-dimensional integration (1-d is particularly good)
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Classification - aggregated data

The Bad:

• Each marginal event is not an unbiased estimating equation

• So this is not a “true” composite likelihood

• The estimates of β will be biased

• All parameters depressed β ↓ 0 (known result)

The (partial) Fix:

• Can reduce the bias using some modifications to this composite likelihood following ideas

in a related context by Cramer (2007)

• Does not eliminate it

• However prediction can still be good if reduction in β ↓ 0 is similar for all parameters

• This is what we found to happen in practice
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Composite symbolic likelihood

• Assume the interested is in a subset of size j of the K dimensions.

• Let bi be the subset of b defining the coordinates of a j−dimensional histogram bin and

let Bi = (B i1 , . . . ,B ij ) be the vector of the number of marginal bins.

• The symbolic likelihood function associated with the vector of counts si
j = (s i

1i , . . . , s
i
Bi ) of

length B i1 × · · · × B ij is

L(si
j ; θ) =

N!

s i
1i ! · · · s i

Bi !

Bi∏
bi=1i

Pbi (θ)s
i
bi ,

where Pbi (θ) =
∫

Υ
i1
bi1

. . .
∫

Υ
ij
bij

gX (x ; θ)dx and gX is a j−dim density.

• The symbolic j−wise composite likelihood function (S(j)) is given by

L
(j)
S (sj ; θ) =

T∏
t=1

∏
i

L(si
jt ; θ)
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Classification - Example 1

Prediction of crop types from satellite images

• ∼250K pixels with 7-dimensional predictor variable x

• 7 response categories with known ground truth

• Use (modified) symbolic composite likelihood over all 1-D predictors 15/24



Classification - Example 1

Bins

Crop type Nk 6 8 10 12 15 20 LM(X ,Y |β)

Cotton 72 450 90.5 90.6 92.8 93.6 94.0 94.1 92.2

Sorghum 66 751 74.6 74.8 75.7 76.4 76.2 76.3 80.3

Pasture Natural 27 479 75.7 75.4 76.0 76.8 77.0 77.1 77.6

Bare Soil 26 173 88.0 89.6 89.2 90.0 89.5 90.1 91.0

Peanut 17 868 81.2 81.3 81.5 81.5 81.9 81.6 82.9

Maize 12 986 9.7 9.9 10.2 10.4 10.3 10.4 14.2

Wheat 10 778 3.4 4.0 4.8 5.0 5.2 5.7 10.3

Overall 234 485 74.6 75.5 76.4 77.1 77.2 77.2 78.1

Time (secs) (164) (162) (221) (229) (276) (508) (6071)

Table 1: Crop specific and overall prediction accuracies (%) using univariate marginal histograms with

B bins. The likelihood optimisation times (in seconds) are reported in the last row.

• Pretty good results with 10 bins

• Overall accuracy 76.4% (histogram) versus 78.1% (classical)

• Poorer performance for less numerous crops (wheat, maize)

• . . . and 27× faster 16/24



Classification - Example 2

• Use a Supersymmetric (SUSY) benchmark dataset which consists of:

• Binary response (K = 2): signal process (which produces supersymmetric particles) vs

background process

• N = 5 million observations

• D = 18 features (8 kinematic properties, 10 functions)

• Comparison with optimal sub-sampling method (Wang et al., 2018 JASA)

• Training data: 4 500 000 obs.

• Test data: 500 000 obs.

• We consider the following:

• Marginal composite likelihood

• Histogram with random counts L
(1)
SO
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Classification - Example

Bins

Likelihood 6 8 10 12 15 20 25

L
(1)
SO 74.4 73.5 75.8 77.8 77.4 78.0 78.0

(13.3) (12.6) (11.5) (13.9) (16.8) (18.0) (21.4)

Table 2: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

• Wang et al. (2018) obtain a prediction accuracy of 78.2 with a computation time of 86.1

seconds.

• Simulation study: as good or better prediction accuracy, shorter computation time

• Sub-sampling will produce better MSE of the regression coefficients.
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Summary

Based on a new approach to SDA:

• Aims at fitting underlying (classical) model

• Views latent (classical) data through symbols

• Logistic regression for large datasets as accurate as sub-sampling method but faster

Current & Future work:

• Properties of symbolic based estimators (Prosha Rahman’s PhD thesis)
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Properties of symbolic based estimators
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From L(S |θ) we have (for a single histogram):

θ̂ is asymptotically consistent and distributed as
√
N
(
θ̂ − θ

)
→ N

(
0, I (θ)−1

)
when

•N →∞
• Number of bins →∞ and volume of each bin → 0

(because then L(S |θ)→ L(x |θ))

But when the bins (number and volume) are fixed then

√
N
(
θ̂ − θ

)
→ N

(
??(θ,Bins), ??(θ,Bins)−1

)
.

• Currently working on non-asymptotic (in bins) distribution of MLE
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Properties of symbolic based estimators
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From L
(j)
SCL(S |θ) we have (for a single histogram):

θ̂
(j)
SCL is asymptotically consistent and distributed as

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
0, G (θ)−1

)
when

•N →∞
• Number of bins →∞ and volume of each bin → 0

(because then L
(j)
SCL(S |θ)→ L

(j)
CL(x |θ))

But when the bins (number and volume) are fixed then, as before
√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
??(θ,Bins), ??(θ,Bins)−1

)
.

• Similarly work in progress.
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Summary

Based on a new approach to SDA:

• Aims at fitting underlying (classical) model

• Views latent (classical) data through symbols

• Logistic regression for large datasets as accurate as sub-sampling method but faster

Current & Future work:

• Properties of symbolic based estimators (Prosha Rahman’s PhD thesis)

• Design of symbols for best performance (Hakiim Jamaluddin’s PhD thesis)

• Histogram setting: How many bins? Bin locations?

• More general symbols

• Characterise impact of using symbols on accuracy

• Trade-off of accuracy vs computation
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THANK YOU

| Manuscripts:

p New models for symbolic data. Beranger, Lin & Sisson (2022). ADAC, to appear.

p Logistic regression models using aggregated data. Whitaker, Beranger & Sisson (2021). JCGS, 30(4),

pp.1049-1067

p Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger & Sisson (2020).

Stats & Computing, 30, pp.1459-1477.
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