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() What is Symbolic Data Analysis?
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. Wnaris Symbolic Data Analysis? [
Rise of non-standard data forms

Standard statistical methods analyse classical
datasets

E.g. x1,...,x, where x; € X = RP

However: Increasingly see non-standard data
forms for analysis.
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Simple non-standard forms: n

. @« _
@ Can arise as result of measurement °
process ©
©
@ Blood pressure naturally recorded as
. . <
(low, high) interval S
@ Particulate matter directly recorded as 8
counts within particle diameter ranges
i.e. histogram g- T '
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S wnatis Symbolic Data Avasi? |
Example: Discretised data = histogram

Scatterplot with loess line

In(Damage)

35 4.0 4.5 5.0
In(Wind speed)

o E.g. point (4.0, 0.0) actually lies within [3.95,4.05) x [-0.05,0.05)
o Strong discretisation could have undesired inferential impact A\
ACEMS
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S wnatis Symbolic Data Avasi? |
Symbolic Data Analysis

o Established by Diday & coauthors in 1990s.

@ Basic unit of data is a distribution rather
than usual datapoint.

interval (a, b)

p-dim hyper-rectangle
histogram

weighted list etc.

can be complicated by “rules”

© © 06 © o

Distribution of Height and Weight . . .
@ Classical data are a special case of symbolic

data:

Court

E.g. symbolic interval s = (a, b) equivalent
to classical data point x if x = a = b.

Or histogram — {x;} as # bins — oc.

—> symbolic analyses must red{ e to

S classical methods. - ACEMf
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How do symbolic data arise?

@ Can arise naturally (measurement error):
E.g. blood pressure, particulate histogram,
truncation/rounding.

@ ‘Big Data’ context:

o Symbolic data points can summarise a
complex & very large dataset in a
compact manner.

o Retaining maximal relevant information

. in original dataset.
Big data — small (symb) data

Easier to analyse (hopefully!) o Collapse over data not needed in detail

for analysis.
Possible use in data privacy?

. , . °. o Summarised data have own internal
Individual can't be identified.

structure, which must be taken into
account in any analysis.

Statistical question: g
[How to do statistical analysis for this form of data?] ACEMI
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- Exsingandnew SDA models [
QOutline

(O Existing and new SDA models

QACEMI
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How to analyse symbolic data?

State of the art:

ﬁ’oorly developed in terms of inferential methods.

Current approaches:
o Descriptive statistics (means, covariances)
= Methods based on 1°/2™ moments: clustering, PCA etc.
o Ad-hoc approaches (e.g. regression)
= Can be plain wrong for inference/prediction.
o Single technique for constructing likelihood functions
= Limited model-based inferences

Over-prevalence of models for intervals & assuming uniformity
K = Need to move beyond uniformity (Lynne Billard)

~

/

Current SDA research:

Developing practical model-based (e.g. likelihood-based) procedures for statistical

inference using symbolic data for general symbols.

‘§ACEMJ'
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Existing models for symbols (1) . suenscer s 20

Symbol: S =(S*,...,5")"

E.g. For random intervals [a;, b;], i=1,...,m
05,' = (a,-, b,')T
OS,‘ = (m,—, Iog I’,‘)T

Then specify a standard (classical data) model for Si,...,S,. E.g.
(mi,logri) " ~ N(u,X)

Model specification issues:

@ Need to find credible models for general S

Not always obvious how to do this.

Easy to specify models for classical data (e.g. GEV).

How to develop models for symbols (with internal variation)?
Can't just fit to means. How to account for variation? etc.

© © © o

?\iACEMf
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- Edtngandnew DA moces |
Existing models for symbols (2) . suenscer s 20

Inference issues:

@ Symbol are summaries of classical data
o Inference at symbol level only
@ Ok but what if interest in modelling underlying data?

o Want full distributional predictions of x (not just mean/var)

Symbol issues:

@ Symbol assumptions are sometimes unrealistic

o Distribution with the interval [a, b] often assumed uniform.
o Extremely unlikely and affects inference/prediction.

@ Symbol parametrisation are not always stable

o E.g. [a,b] = (m,logr)T, when a — b then log r — oo

Q: How to fit models and make predictions at the level A\
of the classical data, based on observed symbols? ACEMf
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O ne pOSSi ble a pproaCh (Beranger, Lin & Sisson, 2017, in preparation)

The general approach:

L(S10,¢) o< [, g(S|x, p)L(x|0)dx
where
o L(x|0) — standard classical data likelihood
o g(S5|x, ¢) — probability of obtaining S given classical data x
o L(5]0) — new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model L(x|#), when the data are viewed only through
symbols S as summaries.

o Limiting case: as S; — x;, then g(Si|x, ¢) — g(xi|x) = d,,(x) and so

L(Sil0, ¢) /5X,.(X)L(x|9)dx = L(xi]0) (classical likelihood)

QACEMI

o Different symbols give different g(S|x, ¢) (and .. L(S5]0, ¢)).
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- Edtngandnew DA moces |
How to construct g(S|x, ¢)?

@ Typically we can easily describe the distribution of X|S:

o Intervals: x ~ U(a, b) where S = (a, b) "
wiU(bi, bit1)  bi < x < biy1
0 else
for fixed {b;i} where S = (si,.. .,sB)T, Wi =S/ >, Sk-
o Gaussian: x ~ N(u,X) where S = (1, Z)".

o Histograms: x ~ {

@ Although U(a, b) specifications are unrealistic (we avoid this later).

o If we specify a prior/marginal on S, we then obtain

f(x|S)f(S)

8(SIx.6) = £(5) = 5

where f(x) = [ f(x|S)f(S)dx.

o Cute for Bayesians: use a posterior to build a classical likelihood :-) w8
ACEMS
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- Edtngandnew DA moces |
Specific cases (1)

o Example (1): No specified generative model L(x|0)

L(516,) o /g(5|x,¢)L(x|e)dx
= L(Sl¢) o g(Sle)
That is:

Directly modelling symbol = existing likelihood approach

(Le Rademacher & Billard, 2011) v
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Specific cases (2): Random intervals

o Example (2): Random intervals: S = (S;,S,)"

Assume:

o Xi,..., X, ~ h(x|w) for some h (not uniform!) and

o 5/ = Xy and 5, = X, are lower/upper order statistics.

Then density of X|S is easily specified as:

f(x|s¢,su) =
LT 0% (xlew) TT ¢ Gxalew) T T 0 (i) (%)) s ()
k=1 k=1 k=1
where
o x=(xa---, X(,,))T

s
*u)(x|lw) = h(x|w)/(1 — H(sy|w X > S,),
h(sf’su)(x\w) = h(x|w)/(H(su|lw) — H(se|lw))I(se < x < su). QACEMJ‘

o Delta functions enforce xs) = S¢ and x(,) = Su.
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- edtingandnew sDA modes
Specific cases (2): Random intervals

@ Now, as Xi,..., X, ~ h(x|w), we also have
n! -1
f(se, su|lw)= H(s¢|w
(sessulw)= T=yta =7 —1yign —uyi )

x [H(sulw) = H(selw)]" ™77 [1 = H(sulw)]" ™" h(s¢|w)h(su|w)
where H(x|w) = [ h(z|w)d.

© And so we have the joint distribution as

n

n!

f(x,se,sulw) = (C—1Dl(u—(—1)I(n—u)! E h(xic|w)ds, (x(6)) s (X(w))
and finally
n B 5
g(se, sulx) = ((—1)l(u—L¢—1)I(n—u)! =0 (x(0))0s, (X
o Note: This is independent of the form of h(x|w)! sACEMf
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- edtingandnew sDA modes
Specific cases (2): Random intervals

o Now if we want to fit the model Xi,..., X, ~ g(x|#), this gives us

L(s¢, su|6)ox /g(s“su|x,c‘>)Hg(xk\0)dx
v k=1
n!

X =D (u—f—1)i(n—u)
x[1 = G(sul0)]"“g(sc|0)g(sul0)
where G(x|0) = [ g(z|0)dz
= the (known) joint distribution of (¢, u)-th order statistics of {Xx}. v/

G(s¢]0) " [G(su|0) — G(s¢]60)]" 2

@ When S; = ming X and S, = max, Xx:
L(s1,50/6) o n(n — 1) [6(s]0) — G(s1 )" 2g(s1|0)g(sul6), 51 < 52
= the (known) joint distribution of min/max of {X\}. v/

@ Symbolic — Classical check: QACEMJ'
If Se — Sy, = x (with n = 1) then L(s¢, s4|0) = g(x|0). v
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- edtingandnew sDA modes
Specific cases (3): Random histograms

n=1000, bins=11 @ Underlying data
Xi, ..oy Xn € RP ~ h(x|w).
° — gango gev o Collected into histogram (random

counts) with fixed bins as:

0.1

= (#X; € By, ... ,#X; € Bg)

0.0

20 26 such that ), s, = n.

@ The density of X|S is

B sp
f(x|s) = [T ™ (xclw)i(xt € Bo)
b=1 (=1
where
o xt is the {-th observation in bin Bp. N\
° h(b)(x\w) x h(x|w)I(x € By). QACEMJ'

o Enforces s, observations in bin Bp.
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- edtingandnew sDA modes
Specific cases (3): Random histograms

@ By construction the (prior) distribution of counts S = (si,...,sg)  is

Folw) = s o [P

where i
Pi(w) = / h(x|w)dx
B Bb
is the probability that any x will fall in bin Bp.

@ Consequently

f(x,Slw) = #:[Hh(x/'\w)nl < I(xi € Bp) = 5b>

First steps in SDA



- edtingandnew sDA modes
Specific cases (3): Random histograms

o As a result

g(Slx) = 51!”.!.58 I(ZI(X/GBb)—sb>.

’ i=1
o Now if we want to fit the model Xi,..., X, ~ g(x|@), this gives us

n

L(SI0) /'g(swx)Hg(xk\e)dx

B
errnt B (UGl
b=1
where P§(0) = fBb g(x]0)dx

= generalises univariate result of McLachlan & Jones (1988). v/

QACEMI

First steps in SDA October 4, 2017 20



- edtingandnew sDA modes
Specific cases (3): Random histograms

@ Limiting case: recover classical likelihood as B — oo

B s,
. . n! b
dim s o Jim o T UB g(z‘(’)dz}

= L(X1,..., X:|0)

b

= recover classical analysis as we approach classical data. v

o Consistency: Can show that with a sufficient number of histogram bins can
perform analysis arbitrarily close to analysis with full dataset.

o Computationally scalable: Working with counts not computationally expensive
latent data.

@ Some approximation of L(5|0) to L(x|0) depending on level of discretisation.
Work needed to quantify this.

@ More complicated if data are not jid but exchangeable (Zhang & Sisson, in

preparation) g
ACEMJS
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o aeeampein VT
QOutline

O An example in EVT

QACEMI
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o aeeampein VT
Motivation

o QUESTION: What is the expected maximum temperature across some region
within the next 50 or 100 years?

e vuinyers]
s LEGEND >
Brlsbane.\g-
‘oowoomba
Surfers Paradise’sr ced Heaas M 42-45
 Lismore, M 39-42

Temperature (°C)

( 33-36
[
_ Coffs Harbour,"
Armidale, 7

21-24 Heat
".Port Macquarie Hi2-1s wave in
South East
_ Australia
(January
2017)

s 0.Top Station s 3
our” ot Butier U Hotham
Melbourne, Xbos s
oSeeiong, 2 Sale, ‘Bairnsdale

> \
olac,  wonthaggi Latrobe Valley
[ —
Bl ACEMS
To0nm ] - 2907°s, 19907
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o aeeampein VT
Motivation

@ What do we know?
o Environmental extremes are spatial = SPATIAL EXTREMES

o Max-stable processes are a convenient tool

@ Drawbacks and challenges?

o High dimensional distributions not always available, computationally costly
= Composite likelihood (Padoan et al. 2010)

o Unfeasible for a large number of locations and temporal observations

@ PROPOSAL: use Symbolic Data Analysis (SDA)

QACEMI
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Max-stable processes

Max-stable processes

o Definition: Let Xi, Xz, ..., be i.i.d replicates of X(s),s € S C IRY.
Y (s) is a max-stable process if an(s) > 0 and b,(s), continuous such that

e, ), 5 s

o Spectral representation (de Haan, 1984; Schlather, 2002) = Max-stable models

ﬁaussian extreme value model (Smith, 1990) defined by \
Y(s) = maxi<; {Cipa(s; t;, X)},s € RY

where ((;, tj)1<; are the points of a point process on (0,00) x IR?,
For d = 2, the bivariate cdf of (Y (s1), Y(s2)), s1,5 € IR? is

P(Y(s1) Sy, V() <yo) =exp (20 (34 Llog2) — Lo (34 L10g 1)),

were vi = (1 ffiy";l_“")_%,i: 1,2and & = (z1 — ) Lz — gA}Mf
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Composite Likelihood

Composite Likelihood (1)

o Let X =(Xi,..., Xu) denote a vector of N i.i.d. rv's taking values in RX with
realisation x = (xi,...,xy) € IR“*N and density function gx(-;0).
o Define a subset of {1,...,K} by i = (i,..../;), where i < --- < ij with

je{l,...,K}forj=1,....,K—1.

© Thenforn=1,..., N, xi € IR/ defines a subset of x, and
X = (x,...,xy) € RN defines a subset of x.

The j-wise composite likelihood function, CLY) | is given by
LE)(x:0) = IT; gxi(x 0),

where gyi is a j—dimensional likelihood function.

?\iACEMf

First steps in SDA October 4, 2017 26



Composite Likelihood (2)

@ When j = 2, the pairwise composite log-likelihood function, /(CQL) is given by

NK(K —
Z Z log gxi(x x1, x2; 0) = ( )terms

i1=1 hb=ih+1

@ The resulting maximum j-wise composite likelihood estimator égz is asymptotically
consistent and distributed as

VN (02) = 0) - N (0.6(0)™),

where G(6) = H(0)J(0)"*H(0), J(0) = V(V1Y)1(0)) is a variability matrix and
H(0) = —E(Vlé%i)(Q)) is a sensitivity matrix.

QACEMI
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Composite Likelihood

Histogram-valued symbols (1)

@ Consider we are only interested in a subset of size j of the K dimensions

o Let b’ be the subset of b defining the coordinates of a j—dimensional histogram
bin and let B' = (B",. .| B') be the vector of the number of marginal bins.

he symbolic likelihood function associated with the vector of counts
= S}y ,si:) of length B x - x Bl is

s"

L(si0) = 3 T P,
where Pyi(0) = f . le gx(x;0)dx and gx is a j—dim density.
1

Bi

QACEMI

First steps in SDA October 4, 2017



Composite Likelihood

Histogram-valued symbols (2)

os ={sh;t=1,...,T,i=(i,....05), i <...<ij} represents the set of
Jj—dimensional observed histograms for the symbolic-valued random variable S;

@ The symbolic j—wise composite likelihood function (SCLY) is given by
sa (sj; 0 H H L(sj; 0
o Components of the Godambe matrix are given by
. 1 < S
H(O(SJgL) = *N ZV2I(S}H O(Sng)

TERRESS (z i) (Z vt
—1 ; \
?)ACEMI
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Simulation experiments: the set up

@ K locations are generated uniformly on a (0, 40) x (0, 40) grid

@ N realisations of the Smith model are generated for each location

@ MLE's are obtained using CL®) and SCL*

B=5

B=10

B=15

. -

Counts
0 e 12 1s et

Loc2
4 2 0 2 4 6

Classic

<

couns
10305 7 9 1 qteet

B=50

38 ‘
A e

Coums 420240

1357 s Loct
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Experiement 1 - Increasing the number of bins

mean MLE

mean MLE

300 O .
o N=1000, K=15, T =1, ¥ = , Repetitions = 1000
0 300
oy L) Location
i pETrTTTTTTTTTT
Scale Shape Legend
I e — Classic MLE
H —— Symbolic MLE
S sl ___ --- Classic 95% CI
1 e - Symbolic 95% ClI
%

Mean of MLEs for 0 = (011, 012, 022, i, 0, €) using CL® and SCL®, for
increasing number of bins in bivariate histograms.
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Simulation experiments

Experiement 2 - Computation time

o B=25 K=10,100, T =1, Repetitions = 10

K =10 K =100

N tc ts Ehist tc ts thist
100 9.8 18.6 | 0.7 | 9758.6 | 15945 | 72.3
500 27.6 26.2 | 0.8 | 45040.1 | 2218.8 | 74.2
1000 71.9 225 | 0.8 - 2238.0 | 78.8
5000 201.8 19.0 | 0.8 - 2650.2 | 81.7
10000 591.7 23.8 | 0.9 - 2356.6 | 85.8
50000 | 2626.8 | 24.2 | 1.7 - 2300.6 | 131.6
100000 | 5610.7 | 25.4 | 2.4 - 2766.9 | 188.2
500000 | 31083.1 | 23.2 | 7.5 - 31115 | 627.1

Mean computation times (sec) to optimise the regular and symbolic composite likelihood
(tc and ts), and to aggregate the data into bivariate histograms (tp;st)

‘§ACEMJ'
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Simulation experiments

Experiement 3 - Convergence of variances (1)

o B =25 N =1000, K = 10, Number of repetitions = 1000

T o1 o012 02 m o 13
4 226.93 | 97.63 | 167.27 | 0.105 | 0.051 | 0.030
5 203.04 | 87.36 | 149.66 | 0.095 | 0.047 | 0.028
10 143.92 | 61.95 | 106.04 | 0.071 | 0.036 | 0.021
20 102.23 | 44.04 75.27 0.054 | 0.029 | 0.016
40 72.93 31.48 53.64 0.043 | 0.024 | 0.013
50 65.52 28.31 48.16 0.040 | 0.023 | 0.012
100 47.38 20.55 34.71 0.034 | 0.020 | 0.011
200 34.87 15.23 25.42 0.030 | 0.018 | 0.010
1000 21.12 13.08 13.11 0.025 | 0.016 | 0.010
Classic 16.65 10.53 10.69 0.020 | 0.014 | 0.009

Mean variances calculated from CL® and SCL® for § = (011,012,022, i, 0, &) for

increasing T. N
?’ACEMI
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Simulation experiments

Experiement 3 - Convergence of variances (2)

o f(é(sng requires T — N and B — oo for the convergence towards the classical
Godambe matrices to occur.

o For T fixed, convergence still occurs as B — oo towards a different expression

oy Tiz -] Legend
1:31‘
. 1 g — T=5
% — T=10
N N N T=20
I - F L —— T=50 -
;-\E_ u_\\_\ \_—_ — T=200
,,,,,,,,, g T=1000
E R — A — —
5 10 15 20 25 & 10 15 20 25 5 10 15 20 25
B B B

Mean variances calculated from SCL®) for fixed T and increasing B.
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Real Data Analysis

Real data analysis: an overview

@ Maximum temperatures across Australia

o Data:

o Focus on fortnighly maxima at K = 105 locations over summer months
o 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

o Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

\
Study region QACEMJ‘
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Real Data Analysis

Model fitting

o Fit the Smith model with mean and variance parameters as linear functions of space

J11 ‘ 712 ‘ J22 ‘ 3

B Historical Data

15 | 176.4 (0.285) | -28.7 (0.032) | 76.8 (0.329) | -0.266 (0.053)
20 | 164.2 (0.289) | -29.3 (0.030) | 74.3 (0.469) | -0.264 (0.049)
25 | 162.4 (0.217) | -29.9 (0.033) | 75.3 (0.284) | -0.264 (0.049)
30 | 161.6 (0.201) | -32.3 (0.029) | 74.4 (0.234) | -0.264 (0.050)
B RCP4.5 Data

15 | 160.9 (0.942) | -34.1 (0.083) | 79.0 (0.222) | -0.249 (0.074)
20 | 163.5 (0.595) | -41.1 (0.073) | 77.6 (0.245) | -0.249 (0.076)
25 | 150.3 (0.349) | -33.1 (0.065) | 70.7 (0.170) | -0.250 (0.073)
30 | 150.2 (0.150) | -31.6 (0.024) | 70.7 (0.154) | -0.250 (0.069)
B RCP8.5 Data

15 | 128.7 (0.860) | -19.6 (0.092) | 67.7 (0.392) | -0.232 (0.061)
20 | 128.0 (0.630) | -19.6 (0.129) | 66.6 (0.332) | -0.231 (0.059)
25 | 136.0 (0.395) | -15.1 (0.093 | 59.4 (0.317) | -0.234 (0.060)
30 | 129.9 (0.401) | -13.6 (0.083) | 56.4 (0.294) | -0.233 (0.055)

MLEs using the SCL® for various

First steps in SDA
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Estimated location parameter

symbolic historical trend mu | B = 30

30 4
28 -
26
24
22 4
20
T T T T T
125 130 135 140 145
symbolic RCP4.5 trend mu | B = 30
30 4
28 4
26
2 -
22 H
20

T T T
125 130 135 140 145

Estimated surfaces for the location parameter using the I‘(52C)L function (left) and marginal

GEV estimations (right)

marginal historical mu

marginal RCP4.5 mu

30 4
8
28
6 2
4 24 -
24
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Examples of return level plots

RCP4.5 95 year return level | B = 30

125 130 135 140 145

Historical 95 year return level | B = 30

Estimated 95 year return levels using the I§2C)L function (left) and observed 95 year return

levels (right)

T T T T T
125 130 135 140 145

I 325

I 320

I 315

I 310

I 325

- 320

I 315

I 310
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RCP4.5 95 year maximum observed
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Historical 95 year maximum observed
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o osasion
QOutline

() Discussion
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Summary

o Completely new approach to SDA:

o Based on fitting underlying (classical) model = Much better!
View latent (classical) data through symbols

Recovers existing models for symbols but is more general
Recovers classical model as § — x

Works for more general symbols than currently in use
Illustration of practical use in extremes

© 06 0 © ©

@ Working on:

o Characterise trade-off between accuracy and computation
o Finalising procedure for distribution valued symbols (Gaussians, etc.)
o Design symbols for best performance

THANK YOU! X
QACEMI

First steps in SDA October 4, 2017 40



	What is Symbolic Data Analysis?
	Existing and new SDA models
	An example in EVT
	Max-stable processes
	Composite Likelihood
	Simulation experiments
	Real Data Analysis

	Discussion

