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What is Symbolic Data Analysis?

Rise of non-standard data forms

Standard statistical methods analyse classical
datasets

E.g. x1, . . . , xn where xi ∈ X = Rp

However: Increasingly see non-standard data
forms for analysis.

Simple non-standard forms:

Can arise as result of measurement
process

Blood pressure naturally recorded as
(low, high) interval

Particulate matter directly recorded as
counts within particle diameter ranges
i.e. histogram
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What is Symbolic Data Analysis?

Example: Discretised data = histogram

 

E.g. point (4.0, 0.0) actually lies within [3.95, 4.05)× [−0.05, 0.05)

Strong discretisation could have undesired inferential impact
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What is Symbolic Data Analysis?

Symbolic Data Analysis

Established by Diday & coauthors in 1990s.

Basic unit of data is a distribution rather
than usual datapoint.

interval (a, b)
p-dim hyper-rectangle
histogram
weighted list etc.
can be complicated by “rules”

Classical data are a special case of symbolic
data:

E.g. symbolic interval s = (a, b) equivalent
to classical data point x if x = a = b.

Or histogram → {xi} as # bins →∞.

=⇒ symbolic analyses must reduce to
classical methods.
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What is Symbolic Data Analysis?

How do symbolic data arise?

Big data → small (symb) data
Easier to analyse (hopefully!)

Possible use in data privacy?
Individual can’t be identified.

Can arise naturally (measurement error):
E.g. blood pressure, particulate histogram,
truncation/rounding.

‘Big Data’ context:

Symbolic data points can summarise a
complex & very large dataset in a
compact manner.

Retaining maximal relevant information
in original dataset.

Collapse over data not needed in detail
for analysis.

Summarised data have own internal
structure, which must be taken into
account in any analysis.�



�
	Statistical question:

How to do statistical analysis for this form of data?
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Existing and new SDA models

How to analyse symbolic data?

State of the art:'

&

$

%

Poorly developed in terms of inferential methods.

Current approaches:
◦ Descriptive statistics (means, covariances)
⇒ Methods based on 1st/2nd moments: clustering, PCA etc.
◦ Ad-hoc approaches (e.g. regression)
⇒ Can be plain wrong for inference/prediction.
◦ Single technique for constructing likelihood functions
⇒ Limited model-based inferences

Over-prevalence of models for intervals & assuming uniformity
⇒ Need to move beyond uniformity (Lynne Billard)

Current SDA research:
Developing practical model-based (e.g. likelihood-based) procedures for statistical

inference using symbolic data for general symbols.
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Existing and new SDA models

Existing models for symbols (1) (Le Rademacher & Billard, 2011)

#

"

 

!

Symbol: S = (S1, . . . , Sn)>

E.g. For random intervals [ai , bi ], i = 1, . . . , n:
◦Si = (ai , bi )

>

◦ Si = (mi , log ri )
>

Then specify a standard (classical data) model for S1, . . . , Sn. E.g.
(mi , log ri )

> ∼ N(µ,Σ)

Model specification issues:

Need to find credible models for general S

Not always obvious how to do this.
Easy to specify models for classical data (e.g. GEV).
How to develop models for symbols (with internal variation)?
Can’t just fit to means. How to account for variation? etc.
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Existing and new SDA models

Existing models for symbols (2) (Le Rademacher & Billard, 2011)

Inference issues:

Symbol are summaries of classical data

Inference at symbol level only

Ok but what if interest in modelling underlying data?

Want full distributional predictions of x (not just mean/var)

Symbol issues:

Symbol assumptions are sometimes unrealistic

Distribution with the interval [a, b] often assumed uniform.
Extremely unlikely and affects inference/prediction.

Symbol parametrisation are not always stable

E.g. [a, b] = (m, log r)>, when a→ b then log r →∞�



�
	Q: How to fit models and make predictions at the level

of the classical data, based on observed symbols?
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Existing and new SDA models

One possible approach (Beranger, Lin & Sisson, 2017, in preparation)'

&

$

%

The general approach:

L(S |θ, φ) ∝
∫
x
g(S |x , φ)L(x |θ)dx

where
◦ L(x |θ) – standard classical data likelihood
◦ g(S |x , φ) – probability of obtaining S given classical data x
◦ L(S |θ) – new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model L(x |θ), when the data are viewed only through
symbols S as summaries.

Limiting case: as Si → xi , then g(Si |x , φ)→ g(xi |x) = δxi (x) and so

L(Si |θ, φ) ∝
∫
x

δxi (x)L(x |θ)dx = L(xi |θ) (classical likelihood)

Different symbols give different g(S |x , φ) (and ∴ L(S |θ, φ)).
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Existing and new SDA models

How to construct g(S |x , φ)?

Typically we can easily describe the distribution of X |S :

Intervals: x ∼ U(a, b) where S = (a, b)>

Histograms: x ∼
{

wiU(bi , bi+1) bi ≤ x ≤ bi+1

0 else

for fixed {bi} where S = (s1, . . . , sB)>, wi = si/
∑

k sk .
Gaussian: x ∼ N(µ,Σ) where S = (µ,Σ)>.

Although U(a, b) specifications are unrealistic (we avoid this later).

If we specify a prior/marginal on S , we then obtain

g(S |x , φ) = g(S |x) =
f (x |S)f (S)

f (x)

where f (x) =
∫
f (x |S)f (S)dx .

Cute for Bayesians: use a posterior to build a classical likelihood :-)
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Existing and new SDA models

Specific cases (1)

Example (1): No specified generative model L(x |θ)

L(S |θ, φ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

⇒ L(S |φ) ∝ g(S |φ)

That is:

Directly modelling symbol = existing likelihood approach
(Le Rademacher & Billard, 2011) X
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Existing and new SDA models

Specific cases (2): Random intervals

Example (2): Random intervals: S = (S`, Su)>

Assume:

X1, . . . ,Xn ∼ h(x |ω) for some h (not uniform!) and
S` = X(`) and Su = X(u) are lower/upper order statistics.

Then density of X |S is easily specified as:

f(x|s`, su) =
n∏

k=1

h(s`)(xk|ω)
n∏

k=1

h(s`,su)(xk|ω)
n∏

k=1

h(s`)(xk|ω)δs`(x(`))δsu (x(u))

where

x = (x(1), . . . , x(n))
>

h(s`)(x |ω) = h(x |ω)/H(s`|ω)I (x < s`) ,
h(su)(x |ω) = h(x |ω)/(1− H(su|ω))I (x > su),
h(s`,su)(x |ω) = h(x |ω)/(H(su|ω)− H(s`|ω))I (s` < x < su).
Delta functions enforce x(`) = S` and x(u) = Su.
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Existing and new SDA models

Specific cases (2): Random intervals

Now, as X1, . . . ,Xn ∼ h(x |ω), we also have

f(s`, su|ω)=
n!

(`− 1)!(u− `− 1)!(n− u)!
H(s`|ω)`−1

× [H(su|ω)−H(s`|ω)]u−`−1 [1−H(su|ω)]n−u h(s`|ω)h(su|ω)

where H(x |ω) =
∫
h(z |ω)dz .

And so we have the joint distribution as

f(x, s`, su|ω) =
n!

(`− 1)!(u− `− 1)!(n− u)!

n∏
k=1

h(xk|ω)δs`(x(`))δsu (x(u))

and finally

g(s`, su|x) =
n!

(`− 1)!(u− `− 1)!(n− u)!
δs`(x(`))δsu (x(u)).

Note: This is independent of the form of h(x |ω)!
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Existing and new SDA models

Specific cases (2): Random intervals

Now if we want to fit the model X1, . . . ,Xn ∼ g(x |θ), this gives us

L(s`, su|θ)∝
∫

x

g(s`, su|x, φ)
n∏

k=1

g(xk|θ)dx

∝ n!

(`− 1)!(u− `− 1)!(n− u)!
G(s`|θ)`−1 [G(su|θ)− G(s`|θ)]u−`−1

×[1− G(su|θ)]n−ug(s`|θ)g(su|θ)

where G(x |θ) =
∫
g(z |θ)dz

⇒ the (known) joint distribution of (`, u)-th order statistics of {Xk}. X

When S` = mink Xk and Su = maxk Xk :

L(s1, sn|θ) ∝ n(n− 1) [G(sn|θ)− G(s1|θ)]n−2 g(s1|θ)g(sn|θ), s1 < s2

⇒ the (known) joint distribution of min/max of {Xk}. X

Symbolic → Classical check:
If S` → Su = x (with n = 1) then L(s`, su|θ) = g(x |θ). X
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Existing and new SDA models

Specific cases (3): Random histograms

n=1000, bins=11
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Underlying data
X1, . . . ,Xn ∈ Rp ∼ h(x |ω).

Collected into histogram (random
counts) with fixed bins as:

S= (s1, . . . , sB)>

= (#Xi ∈ B1, . . . ,#Xi ∈ BB)>

such that
∑

b sb = n.

The density of X |S is

f(x|s) =
B∏

b=1

sb∏
`=1

h(b)(x`b|ω)I(x`b ∈ Bb)

where

x`b is the `-th observation in bin Bb.
h(b)(x |ω) ∝ h(x |ω)I (x ∈ Bb).
Enforces sb observations in bin Bb.
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Existing and new SDA models

Specific cases (3): Random histograms

By construction the (prior) distribution of counts S = (s1, . . . , sB)> is

f (S |ω) =
n!

s1! . . . sB !

∏
Ph
b (ω)sb

where

Ph
b (ω) =

∫
Bb

h(x |ω)dx

is the probability that any x will fall in bin Bb.

Consequently

f (x , S |ω) =
n!

s1! . . . sn!

n∏
i=1

h(xi |ω)
B∏

b=1

I

(
n∑

i=1

I (xi ∈ Bb) = sb

)
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Existing and new SDA models

Specific cases (3): Random histograms

As a result

g(S |x) =
n!

s1! . . . sB

B∏
b=1

I

(
n∑

i=1

I (xi ∈ Bb) = sb

)
.

Now if we want to fit the model X1, . . . ,Xn ∼ g(x |θ), this gives us

L(S|θ)∝
∫

x

g(S|x)
n∏

k=1

g(xk|θ)dx

∝ n!

s1! . . . sn!

B∏
b=1

[Pg
b(θ)]sb

where Pg
b (θ) =

∫
Bb

g(x |θ)dx

⇒ generalises univariate result of McLachlan & Jones (1988). X
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Existing and new SDA models

Specific cases (3): Random histograms

Limiting case: recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

n!

s1! . . . sB !

B∏
b=1

[∫
Bb

g(z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

⇒ recover classical analysis as we approach classical data. X

Consistency: Can show that with a sufficient number of histogram bins can
perform analysis arbitrarily close to analysis with full dataset.

Computationally scalable: Working with counts not computationally expensive
latent data.

Some approximation of L(S |θ) to L(x |θ) depending on level of discretisation.
Work needed to quantify this.

More complicated if data are not iid but exchangeable (Zhang & Sisson, in
preparation)
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An example in EVT

Motivation

QUESTION: What is the expected maximum temperature across some region
within the next 50 or 100 years?

Figure: Heat
wave in
South East
Australia
(January
2017)
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An example in EVT

Motivation

What do we know?

Environmental extremes are spatial ⇒ SPATIAL EXTREMES

Max-stable processes are a convenient tool

Drawbacks and challenges?

High dimensional distributions not always available, computationally costly
⇒ Composite likelihood (Padoan et al. 2010)

Unfeasible for a large number of locations and temporal observations

PROPOSAL: use Symbolic Data Analysis (SDA)
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An example in EVT Max-stable processes

Max-stable processes

Definition: Let X1,X2, . . . , be i.i.d replicates of X (s), s ∈ S ⊂ IRd .

Y (s) is a max-stable process if ∃ an(s) > 0 and bn(s), continuous such that{
max

i=1,...,n

Xi (s)− bn(s)

an(s)

}
s∈S

d−→ {Y (s)}s∈S .

Spectral representation (de Haan, 1984; Schlather, 2002) ⇒ Max-stable models'

&

$

%

Gaussian extreme value model (Smith, 1990) defined by

Y (s) = max1≤i {ζiφd(s; ti ,Σ)} , s ∈ IRd

where (ζi , ti )1≤i are the points of a point process on (0,∞)× IRd ,
For d = 2, the bivariate cdf of (Y (s1),Y (s2)), s1, s2 ∈ IR2 is

P(Y (s1) ≤ y1,Y (s2) ≤ y2) = exp
(
− 1

v1
Φ
(

a
2

+ 1
a

log v2
v1

)
− 1

v2
Φ
(

a
2

+ 1
a

log v1
v2

))
,

where vi =
(

1− ξi yi−µi
σi

)− 1
ξ
, i = 1, 2 and a2 = (z1 − z2)TΣ−1(z1 − z2)
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An example in EVT Composite Likelihood

Composite Likelihood (1)

Let X = (X1, . . . ,XN) denote a vector of N i.i.d. rv’s taking values in IRK with
realisation x = (x1, . . . , xN) ∈ IRK×N and density function gX(·; θ).

Define a subset of {1, . . . ,K} by i = (i1, . . . , ij), where i1 < · · · < ij with
ij ∈ {1, . . . ,K} for j = 1, . . . ,K − 1.

Then for n = 1, . . . ,N, x i
n ∈ IRj defines a subset of xn and

xi = (x i
1, . . . , x

i
N) ∈ IRj×N , defines a subset of x.�

�

�

�
The j-wise composite likelihood function, CL(j) , is given by

L
(j)
CL(x; θ) =

∏
i gXi (xi; θ),

where gXi is a j−dimensional likelihood function.
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An example in EVT Composite Likelihood

Composite Likelihood (2)

When j = 2 , the pairwise composite log-likelihood function, l
(2)
CL is given by

l
(2)
CL (x; θ) =

K−1∑
i1=1

K∑
i2=i1+1

log gXi (xi1 , xi2 ; θ)⇒
NK(K − 1)

2
terms

The resulting maximum j-wise composite likelihood estimator θ̂
(j)
CL is asymptotically

consistent and distributed as
√
N
(
θ̂

(j)
CL − θ

)
→ N

(
0,G(θ)−1

)
,

where G(θ) = H(θ)J(θ)−1H(θ), J(θ) = V(∇l (j)CL l(θ)) is a variability matrix and

H(θ) = −E(∇l2(j)
CL (θ)) is a sensitivity matrix.
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An example in EVT Composite Likelihood

Histogram-valued symbols (1)

Consider we are only interested in a subset of size j of the K dimensions

Let bi be the subset of b defining the coordinates of a j−dimensional histogram
bin and let Bi = (B i1 , . . . ,B ij ) be the vector of the number of marginal bins.

#

"

 

!

The symbolic likelihood function associated with the vector of counts
si
j = (s i

1i , . . . , s
i
Bi ) of length B i1 × · · · × B ij is

L(si
j ; θ) = N!

s i
1i !···s i

Bi !

∏Bi

bi=1i Pbi (θ)
s i
bi ,

where Pbi (θ) =
∫

Υ
i1
bi1

. . .
∫

Υ
ij
bij

gX (x ; θ)dx and gX is a j−dim density.
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An example in EVT Composite Likelihood

Histogram-valued symbols (2)

sj = {si
jt ; t = 1, . . . ,T , i = (i1, . . . , ij), i1 < . . . < ij} represents the set of

j−dimensional observed histograms for the symbolic-valued random variable Sj

The symbolic j−wise composite likelihood function (SCL(j)) is given by

L
(j)
SCL(sj ; θ) =

T∏
t=1

∏
i

L(si
jt ; θ)

Components of the Godambe matrix are given by

Ĥ(θ̂
(j)
SCL) = − 1

N

T∑
t=1

∑
i

∇2l(si
jt ; θ̂

(j)
SCL)

Ĵ(θ̂
(j)
SCL) =

1

N

T∑
t=1

(∑
i

∇l(si
jt ; θ̂

(j)
SCL)

)(∑
i

∇l(si
jt ; θ̂

(j)
SCL)

)>

B. Beranger(UNSW) First steps in SDA October 4, 2017 29



An example in EVT Simulation experiments

Simulation experiments: the set up

K locations are generated uniformly on a (0, 40)× (0, 40) grid

N realisations of the Smith model are generated for each location

MLE’s are obtained using CL(2) and SCL(2)
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An example in EVT Simulation experiments

Experiement 1 - Increasing the number of bins

N = 1000, K = 15, T = 1, Σ =

[
300 0

0 300

]
, Repetitions = 1000

Figure: Mean of MLEs for θ = (σ11, σ12, σ22, µ, σ, ξ) using CL(2) and SCL(2), for
increasing number of bins in bivariate histograms.
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An example in EVT Simulation experiments

Experiement 2 - Computation time

B = 25, K = 10, 100, T = 1, Repetitions = 10

K = 10 K = 100

N tc ts thist tc ts thist
100 9.8 18.6 0.7 9758.6 1594.5 72.3
500 27.6 26.2 0.8 45040.1 2218.8 74.2

1000 71.9 22.5 0.8 - 2238.0 78.8
5000 291.8 19.0 0.8 - 2650.2 81.7

10000 591.7 23.8 0.9 - 2356.6 85.8
50000 2626.8 24.2 1.7 - 2300.6 131.6

100000 5610.7 25.4 2.4 - 2766.9 188.2
500000 31083.1 23.2 7.5 - 3111.5 627.1

Table: Mean computation times (sec) to optimise the regular and symbolic composite likelihood
(tc and ts), and to aggregate the data into bivariate histograms (thist)
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An example in EVT Simulation experiments

Experiement 3 - Convergence of variances (1)

B = 25, N = 1000, K = 10, Number of repetitions = 1000

T σ11 σ12 σ22 µ σ ξ

4 226.93 97.63 167.27 0.105 0.051 0.030
5 203.04 87.36 149.66 0.095 0.047 0.028

10 143.92 61.95 106.04 0.071 0.036 0.021
20 102.23 44.04 75.27 0.054 0.029 0.016
40 72.93 31.48 53.64 0.043 0.024 0.013
50 65.52 28.31 48.16 0.040 0.023 0.012

100 47.38 20.55 34.71 0.034 0.020 0.011
200 34.87 15.23 25.42 0.030 0.018 0.010

1000 21.12 13.08 13.11 0.025 0.016 0.010

Classic 16.65 10.53 10.69 0.020 0.014 0.009

Table: Mean variances calculated from CL(2) and SCL(2) for θ = (σ11, σ12, σ22, µ, σ, ξ) for
increasing T .
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An example in EVT Simulation experiments

Experiement 3 - Convergence of variances (2)

Ĵ(θ̂
(j)
SCL) requires T → N and B→∞ for the convergence towards the classical

Godambe matrices to occur.

For T fixed, convergence still occurs as B→∞ towards a different expression

Figure: Mean variances calculated from SCL(2) for fixed T and increasing B.

B. Beranger(UNSW) First steps in SDA October 4, 2017 34



An example in EVT Real Data Analysis

Real data analysis: an overview

Maximum temperatures across Australia

Data:

Focus on fortnighly maxima at K = 105 locations over summer months
3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

Figure: Study region
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An example in EVT Real Data Analysis

Model fitting

Fit the Smith model with mean and variance parameters as linear functions of space

Figure: MLEs using the SCL(2) for various values of B.
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An example in EVT Real Data Analysis

Estimated location parameter

Figure: Estimated surfaces for the location parameter using the l
(2)
SCL function (left) and marginal

GEV estimations (right)
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An example in EVT Real Data Analysis

Examples of return level plots

Figure: Estimated 95 year return levels using the l
(2)
SCL function (left) and observed 95 year return

levels (right)
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Discussion

Summary

Completely new approach to SDA:

Based on fitting underlying (classical) model ⇒ Much better!
View latent (classical) data through symbols
Recovers existing models for symbols but is more general
Recovers classical model as S → x
Works for more general symbols than currently in use
Illustration of practical use in extremes

Working on:

Characterise trade-off between accuracy and computation
Finalising procedure for distribution valued symbols (Gaussians, etc.)
Design symbols for best performance

THANK YOU!
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