First steps in the analysis of Symbolic Data

B. Beranger

jointly with T. Whitaker, J. Lin and S. A. Sisson

UNSW Sydney & ACEMS

Statistics Seminar, University of Melbourne, 4 October 2017

B. Beranger(UNSW)

What is Symbolic Data Analysis?

Existing and new SDA models

An example in EVT

Discussion

Outline

Existing and new SDA models

3 An example in EVT

Discussion

What is Symbolic Data Analysis?

Rise of non-standard data forms

Simple non-standard forms:

- Can arise as result of measurement process
- Blood pressure naturally recorded as (low, high) interval
- Particulate matter directly recorded as counts within particle diameter ranges i.e. histogram

Standard statistical methods analyse classical datasets

E.g. x_1, \ldots, x_n where $x_i \in \mathcal{X} = \mathbb{R}^p$

However: Increasingly see non-standard data forms for analysis.

B. Beranger(UNSW)

October 4, 2017

Example: Discretised data = histogram

Scatterplot with loess line

- E.g. point (4.0, 0.0) actually lies within $[3.95, 4.05) \times [-0.05, 0.05)$
- Strong discretisation could have undesired inferential impact

Symbolic Data Analysis

- Established by Diday & coauthors in 1990s.
- Basic unit of data is a distribution rather than usual datapoint.
 - interval (a, b)
 - p-dim hyper-rectangle
 - histogram
 - weighted list etc.
 - can be complicated by "rules"
- Classical data are a special case of symbolic data:
 - E.g. symbolic interval s = (a, b) equivalent to classical data point x if x = a = b.

Or histogram $\rightarrow \{x_i\}$ as # bins $\rightarrow \infty$.

 \Rightarrow symbolic analyses must reduce to classical methods.

How do symbolic data arise?

Big data \rightarrow small (symb) data Easier to analyse (hopefully!)

Possible use in data privacy? Individual can't be identified.

- Can arise naturally (measurement error):
 E.g. blood pressure, particulate histogram, truncation/rounding.
- 'Big Data' context:
 - Symbolic data points can summarise a complex & very large dataset in a compact manner.
 - Retaining maximal relevant information in original dataset.
 - Collapse over data not needed in detail for analysis.
 - Summarised data have own internal structure, which must be taken into account in any analysis.

Statistical question:

How to do statistical analysis for this form of data?

Outline

Existing and new SDA models

3 An example in EVT

Discussion

How to analyse symbolic data?

State of the art:

Poorly developed in terms of inferential methods.

Current approaches:

- Descriptive statistics (means, covariances)
 - \Rightarrow Methods based on $1^{st}/2^{nd}$ moments: clustering, PCA etc.
- Ad-hoc approaches (e.g. regression)
 - \Rightarrow Can be plain wrong for inference/prediction.
- o Single technique for constructing likelihood functions
- \Rightarrow Limited model-based inferences

Over-prevalence of models for intervals & assuming uniformity

 \Rightarrow Need to move beyond uniformity (Lynne Billard)

Current SDA research:

Developing practical model-based (e.g. likelihood-based) procedures for statistical inference using symbolic data for general symbols.

Existing models for symbols (1) (Le Rademacher & Billard, 2011)

Symbol:
$$S = (S^1, ..., S^n)^\top$$

E.g. For random intervals $[a_i, b_i]$, $i = 1, ..., n$:
 $\circ S_i = (a_i, b_i)^\top$
 $\circ S_i = (m_i, \log r_i)^\top$
Then specify a standard (classical data) model for $S_1, ..., S_n$. E.g.
 $(m_i, \log r_i)^\top \sim N(\mu, \Sigma)$

Model specification issues:

- Need to find credible models for general S
 - Not always obvious how to do this.
 - Easy to specify models for classical data (e.g. GEV).
 - How to develop models for symbols (with internal variation)?
 - Can't just fit to means. How to account for variation? etc.

Existing models for symbols (2) (Le Rademacher & Billard, 2011)

Inference issues:

- Symbol are summaries of classical data
 - Inference at symbol level only
- Ok but what if interest in modelling underlying data?
 - Want full distributional predictions of x (not just mean/var)

Symbol issues:

- Symbol assumptions are sometimes unrealistic
 - Distribution with the interval [a, b] often assumed uniform.
 - Extremely unlikely and affects inference/prediction.
- Symbol parametrisation are not always stable
 - E.g. $[a, b] = (m, \log r)^{\top}$, when $a \to b$ then $\log r \to \infty$

Q: How to fit models and make predictions at the level of the classical data, based on observed symbols?

One possible approach (Beranger, Lin & Sisson, 2017, in preparation)

Gist: Fitting the standard classical model $L(x|\theta)$, when the data are viewed only through symbols S as summaries.

• Limiting case: as $S_i \to x_i$, then $g(S_i|x, \phi) \to g(x_i|x) = \delta_{x_i}(x)$ and so

$$L(S_i|\theta,\phi) \propto \int_x \delta_{x_i}(x) L(x|\theta) dx = L(x_i|\theta)$$
 (classical likelihood)

• Different symbols give different $g(S|x, \phi)$ (and $\therefore L(S|\theta, \phi)$).

How to construct $g(S|x, \phi)$?

• Typically we can easily describe the distribution of X|S:

- Intervals: $x \sim U(a, b)$ where $S = (a, b)^{\top}$ • Histograms: $x \sim \begin{cases} w_i U(b_i, b_{i+1}) & b_i \leq x \leq b_{i+1} \\ 0 & \text{else} \end{cases}$ for fixed $\{b_i\}$ where $S = (s_1, \dots, s_B)^{\top}$, $w_i = s_i / \sum_k s_k$. • Gaussian: $x \sim N(\mu, \Sigma)$ where $S = (\mu, \Sigma)^{\top}$.
- Although U(a, b) specifications are unrealistic (we avoid this later).

• If we specify a prior/marginal on S, we then obtain

$$g(S|x,\phi) = g(S|x) = \frac{f(x|S)f(S)}{f(x)}$$

where $f(x) = \int f(x|S)f(S)dx$.

• Cute for Bayesians: use a posterior to build a classical likelihood :-)

Specific cases (1)

• Example (1): No specified generative model $L(x|\theta)$

$$L(S|\theta,\phi) \propto \int_{x} g(S|x,\phi) L(x|\theta) dx$$

$$\Rightarrow L(S|\phi) \propto g(S|\phi)$$

That is:

Directly modelling symbol = existing likelihood approach (Le Rademacher & Billard, 2011) \checkmark

Specific cases (2): Random intervals

• Example (2): Random intervals: $S = (S_{\ell}, S_u)^{\top}$

Assume:

• $X_1, \ldots, X_n \sim h(x|\omega)$ for some h (not uniform!) and • $S_{\ell} = X_{(\ell)}$ and $S_u = X_{(u)}$ are lower/upper order statistics.

Then density of X|S is easily specified as:

$$\begin{split} f(\mathbf{x}|s_{\ell},s_{u}) &= \\ &\prod_{k=1}^{n} h^{(s_{\ell})}(\mathbf{x}_{k}|\omega) \prod_{k=1}^{n} h^{(s_{\ell},s_{u})}(\mathbf{x}_{k}|\omega) \prod_{k=1}^{n} h^{(s_{\ell})}(\mathbf{x}_{k}|\omega) \delta_{s_{\ell}}(\mathbf{x}_{(\ell)}) \delta_{s_{u}}(\mathbf{x}_{(u)}) \end{split}$$

where

•
$$x = (x_{(1)}, \ldots, x_{(n)})^{\top}$$

• $h^{(s_{\ell})}(x|\omega) = h(x|\omega)/H(s_{\ell}|\omega)I(x < s_{\ell})$,
 $h^{(s_u)}(x|\omega) = h(x|\omega)/(1 - H(s_u|\omega))I(x > s_u)$,
 $h^{(s_{\ell},s_u)}(x|\omega) = h(x|\omega)/(H(s_u|\omega) - H(s_{\ell}|\omega))I(s_{\ell} < x < s_u)$.
• Delta functions enforce $x_{(\ell)} = S_{\ell}$ and $x_{(u)} = S_u$.

Specific cases (2): Random intervals

• Now, as $X_1, \ldots, X_n \sim h(x|\omega)$, we also have

$$\begin{split} \mathsf{f}(\mathsf{s}_{\ell},\mathsf{s}_{\mathsf{u}}|\omega) &= \frac{\mathsf{n}!}{(\ell-1)!(\mathsf{u}-\ell-1)!(\mathsf{n}-\mathsf{u})!}\mathsf{H}(\mathsf{s}_{\ell}|\omega)^{\ell-1} \\ &\times \left[\mathsf{H}(\mathsf{s}_{\mathsf{u}}|\omega) - \mathsf{H}(\mathsf{s}_{\ell}|\omega)\right]^{\mathsf{u}-\ell-1} \left[1 - \mathsf{H}(\mathsf{s}_{\mathsf{u}}|\omega)\right]^{\mathsf{n}-\mathsf{u}}\mathsf{h}(\mathsf{s}_{\ell}|\omega)\mathsf{h}(\mathsf{s}_{\mathsf{u}}|\omega) \end{split}$$

where $H(x|\omega) = \int h(z|\omega) dz$.

And so we have the joint distribution as

$$\mathbf{f}(\mathbf{x}, \mathbf{s}_{\ell}, \mathbf{s}_{\mathsf{u}} | \omega) = \frac{\mathbf{n}!}{(\ell - 1)!(\mathbf{u} - \ell - 1)!(\mathbf{n} - \mathbf{u})!} \prod_{\mathsf{k} = 1}^{\mathsf{n}} \mathbf{h}(\mathbf{x}_{\mathsf{k}} | \omega) \delta_{\mathbf{s}_{\ell}}(\mathbf{x}_{(\ell)}) \delta_{\mathbf{s}_{\mathsf{u}}}(\mathbf{x}_{(\mathsf{u})})$$

and finally

$$g(s_\ell,s_u|x)=\frac{n!}{(\ell-1)!(u-\ell-1)!(n-u)!}\delta_{s_\ell}(x_{(\ell)})\delta_{s_u}(x_{(u)}).$$

• Note: This is independent of the form of $h(x|\omega)!$

B. Beranger(UNSW)

Specific cases (2): Random intervals

• Now if we want to fit the model $X_1, \ldots, X_n \sim g(x|\theta)$, this gives us

$$\begin{split} \mathsf{L}(\mathsf{s}_{\ell},\mathsf{s}_{\mathsf{u}}|\theta) &\propto \int_{\mathsf{x}} \mathsf{g}(\mathsf{s}_{\ell},\mathsf{s}_{\mathsf{u}}|\mathsf{x},\phi) \prod_{\mathsf{k}=1}^{\mathsf{n}} \mathsf{g}(\mathsf{x}_{\mathsf{k}}|\theta) \mathsf{d}\mathsf{x} \\ &\propto \frac{\mathsf{n}!}{(\ell-1)!(\mathsf{u}-\ell-1)!(\mathsf{n}-\mathsf{u})!} \mathsf{G}(\mathsf{s}_{\ell}|\theta)^{\ell-1} \left[\mathsf{G}(\mathsf{s}_{\mathsf{u}}|\theta) - \mathsf{G}(\mathsf{s}_{\ell}|\theta)\right]^{\mathsf{u}-\ell-1} \\ &\times \left[1 - \mathsf{G}(\mathsf{s}_{\mathsf{u}}|\theta)\right]^{\mathsf{n}-\mathsf{u}} \mathsf{g}(\mathsf{s}_{\ell}|\theta) \mathsf{g}(\mathsf{s}_{\mathsf{u}}|\theta) \end{split}$$

where $G(x|\theta) = \int g(z|\theta) dz$ \Rightarrow the (known) joint distribution of (ℓ, u) -th order statistics of $\{X_k\}$.

• When $S_{\ell} = \min_k X_k$ and $S_u = \max_k X_k$: $L(s_1, s_n | \theta) \propto n(n-1) \left[G(s_n | \theta) - G(s_1 | \theta) \right]^{n-2} g(s_1 | \theta) g(s_n | \theta), \quad s_1 < s_2$

 \Rightarrow the (known) joint distribution of min/max of {X_k}. \checkmark

• Symbolic \rightarrow Classical check: If $S_{\ell} \rightarrow S_u = x$ (with n = 1) then $L(s_{\ell}, s_u | \theta) = g(x | \theta)$. \checkmark

- Underlying data $X_1, \ldots, X_n \in \mathbb{R}^p \sim h(x|\omega).$
- Collected into histogram (random counts) with fixed bins as:

$$\begin{split} \boldsymbol{S} &= (\boldsymbol{s}_1, \dots, \boldsymbol{s}_B)^\top \\ &= (\#\boldsymbol{X}_i \in \boldsymbol{B}_1, \, \dots, \#\boldsymbol{X}_i \in \boldsymbol{B}_B)^\top \end{split}$$

such that $\sum_{b} s_{b} = n$.

• The density of X|S is

$$\mathsf{f}(\mathsf{x}|\mathsf{s}) = \prod_{\mathsf{b}=1}^{\mathsf{B}} \prod_{\ell=1}^{\mathsf{s}_{\mathsf{b}}} \mathsf{h}^{(\mathsf{b})}(\mathsf{x}_{\mathsf{b}}^{\ell}|\omega) \mathsf{I}(\mathsf{x}_{\mathsf{b}}^{\ell} \in \mathsf{B}_{\mathsf{b}})$$

where

- x_b^{ℓ} is the ℓ -th observation in bin B_b .
- $h^{(b)}(x|\omega) \propto h(x|\omega)I(x \in B_b).$
- Enforces s_b observations in bin B_b .

• By construction the (prior) distribution of counts $S = (s_1, \ldots, s_B)^{\top}$ is

$$f(S|\omega) = \frac{n!}{s_1! \dots s_B!} \prod P_b^h(\omega)^{s_b}$$

where

$$P_b^h(\omega) = \int_{B_b} h(x|\omega) dx$$

is the probability that any x will fall in bin B_b .

Consequently

$$f(x, S|\omega) = \frac{n!}{s_1! \dots s_n!} \prod_{i=1}^n h(x_i|\omega) \prod_{b=1}^B I\left(\sum_{i=1}^n I(x_i \in B_b) = s_b\right)$$

As a result

$$g(S|x) = rac{n!}{s_1! \dots s_B} \prod_{b=1}^B I\left(\sum_{i=1}^n I(x_i \in B_b) = s_b\right).$$

• Now if we want to fit the model $X_1, \ldots, X_n \sim g(x|\theta)$, this gives us

$$\begin{split} \mathsf{L}(\mathsf{S}|\theta) &\propto \int_{\mathsf{x}} \mathsf{g}(\mathsf{S}|\mathsf{x}) \prod_{k=1}^{\mathsf{n}} \mathsf{g}(\mathsf{x}_{k}|\theta) \mathsf{d}\mathsf{x} \\ &\propto \frac{\mathsf{n}!}{\mathsf{s}_{1}! \dots \mathsf{s}_{\mathsf{n}}!} \prod_{\mathsf{b}=1}^{\mathsf{B}} [\mathsf{P}_{\mathsf{b}}^{\mathsf{g}}(\theta)]^{\mathsf{s}_{\mathsf{b}}} \end{split}$$

where $P_b^g(\theta) = \int_{B_b} g(x|\theta) dx$

 \Rightarrow generalises univariate result of McLachlan & Jones (1988). \checkmark

• Limiting case: recover classical likelihood as $B \to \infty$

$$\lim_{B\to\infty} L(S|\theta) \propto \lim_{B\to\infty} \frac{n!}{s_1!\dots s_B!} \prod_{b=1}^B \left[\int_{B_b} g(z|\theta) dz \right]^{s_b}$$
$$= L(X_1,\dots,X_n|\theta)$$

- \Rightarrow recover classical analysis as we approach classical data. \checkmark
- **Consistency:** Can show that with a sufficient number of histogram bins can perform analysis arbitrarily close to analysis with full dataset.
- Computationally scalable: Working with counts not computationally expensive latent data.
- Some approximation of $L(S|\theta)$ to $L(x|\theta)$ depending on level of discretisation. Work needed to quantify this.
- More complicated if data are not *iid* but exchangeable (Zhang & Sisson, in preparation)

Outline

What is Symbolic Data Analysis?

Existing and new SDA models

An example in EVT

Discussion

Motivation

• <u>QUESTION</u>: What is the expected maximum temperature across some region within the next 50 or 100 years?

B. Beranger(UNSW)

ACEM∫

Motivation

- What do we know?
 - Environmental extremes are spatial \Rightarrow SPATIAL EXTREMES
 - Max-stable processes are a convenient tool
- Drawbacks and challenges?
 - $\bullet\,$ High dimensional distributions not always available, computationally costly \Rightarrow Composite likelihood (Padoan et al. 2010)
 - Unfeasible for a large number of locations and temporal observations
- PROPOSAL: use Symbolic Data Analysis (SDA)

Max-stable processes

Definition: Let X₁, X₂,..., be i.i.d replicates of X(s), s ∈ S ⊂ ℝ^d.
 Y(s) is a max-stable process if ∃ a_n(s) > 0 and b_n(s), continuous such that

$$\left\{\max_{i=1,\ldots,n}\frac{X_i(s)-b_n(s)}{a_n(s)}\right\}_{s\in\mathcal{S}}\stackrel{d}{\longrightarrow} \left\{Y(s)\right\}_{s\in\mathcal{S}}$$

• Spectral representation (de Haan, 1984; Schlather, 2002) \Rightarrow Max-stable models

Gaussian extreme value model (Smith, 1990) defined by

 $Y(s) = \max_{1 \le i} \left\{ \zeta_i \phi_d(s; t_i, \Sigma) \right\}, s \in \mathbb{R}^d$

where $(\zeta_i, t_i)_{1 \leq i}$ are the points of a point process on $(0, \infty) \times \mathbb{R}^d$, For d = 2, the bivariate cdf of $(Y(s_1), Y(s_2))$, $s_1, s_2 \in \mathbb{R}^2$ is

$$P(Y(s_1) \le y_1, Y(s_2) \le y_2) = \exp\left(-\frac{1}{v_1}\Phi\left(\frac{a}{2} + \frac{1}{a}\log\frac{v_2}{v_1}\right) - \frac{1}{v_2}\Phi\left(\frac{a}{2} + \frac{1}{a}\log\frac{v_1}{v_2}\right)\right),$$

where
$$v_i = \left(1 - \xi_i \frac{y_i - \mu_i}{\sigma_i}\right)^{-\frac{1}{\xi}}, i = 1, 2 \text{ and } a^2 = (z_1 - z_2)^T \Sigma^{-1} (z_1 - z_2)^T ACEMS^{-1}$$

Composite Likelihood (1)

- Let $\mathbf{X} = (X_1, \dots, X_N)$ denote a vector of N i.i.d. rv's taking values in \mathbb{R}^K with realisation $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^{K \times N}$ and density function $g_{\mathbf{X}}(\cdot; \theta)$.
- Define a subset of $\{1, \ldots, K\}$ by $i = (i_1, \ldots, i_j)$, where $i_1 < \cdots < i_j$ with $i_j \in \{1, \ldots, K\}$ for $j = 1, \ldots, K 1$.
- Then for n = 1, ..., N, $x_n^i \in \mathbb{R}^j$ defines a subset of x_n and $x^i = (x_1^i, ..., x_N^i) \in \mathbb{R}^{j \times N}$, defines a subset of x.

The j-wise composite likelihood function, $\mathbf{CL}^{(j)}$, is given by

$$L_{CL}^{(j)}(\mathbf{x};\theta) = \prod_{\mathbf{i}} g_{\mathbf{X}^{\mathbf{i}}}(\mathbf{x}^{\mathbf{i}};\theta),$$

where $g_{\mathbf{x}^i}$ is a *j*-dimensional likelihood function.

ΔСΕΜ

Composite Likelihood (2)

• When j = 2, the *pairwise* composite log-likelihood function, $l_{CL}^{(2)}$ is given by

$$I_{CL}^{(2)}(\mathbf{x};\theta) = \sum_{i_1=1}^{K-1} \sum_{i_2=i_1+1}^{K} \log g_{\mathbf{X}^i}(\mathbf{x}^{i_1},\mathbf{x}^{i_2};\theta) \Rightarrow \frac{NK(K-1)}{2} \text{ terms}$$

• The resulting maximum j-wise composite likelihood estimator $\hat{\theta}_{CL}^{(j)}$ is asymptotically consistent and distributed as

$$\sqrt{N}\left(\hat{\theta}_{CL}^{(j)}-\theta\right) \rightarrow \mathcal{N}\left(0, G(\theta)^{-1}\right),$$

where $G(\theta) = H(\theta)J(\theta)^{-1}H(\theta)$, $J(\theta) = \mathbb{V}(\nabla l_{CL}^{(j)}l(\theta))$ is a variability matrix and $H(\theta) = -\mathbb{E}(\nabla l_{CL}^{2(j)}(\theta))$ is a sensitivity matrix.

Histogram-valued symbols (1)

- Consider we are only interested in a subset of size j of the K dimensions
- Let bⁱ be the subset of b defining the coordinates of a *j*-dimensional histogram bin and let Bⁱ = (Bⁱ¹,..., B^{ij}) be the vector of the number of marginal bins.

The symbolic likelihood function associated with the vector of counts

$$\mathbf{s}_{j}^{i} = (s_{1i}^{i}, \dots, s_{Bi}^{i})$$
 of length $B^{i_{1}} \times \dots \times B^{i_{j}}$ is
 $L(\mathbf{s}_{j}^{i}; \theta) = \frac{N!}{\mathbf{s}_{1i}^{i_{1}} \cdots \mathbf{s}_{Bi}^{i_{1}}} \prod_{\mathbf{b}^{i}=1i}^{\mathbf{B}^{i}} P_{\mathbf{b}^{i}}(\theta)^{\mathbf{s}_{\mathbf{b}^{i}}^{i_{j}}},$
where $P_{\mathbf{b}^{i}}(\theta) = \int_{\Upsilon_{b_{i_{1}}}^{i_{1}}} \dots \int_{\Upsilon_{b_{i_{j}}}^{i_{j}}} g_{X}(x; \theta) dx$ and g_{X} is a j -dim density.

Histogram-valued symbols (2)

s_j = {sⁱ_{jt}; t = 1,..., T, i = (i₁,..., i_j), i₁ < ... < i_j} represents the set of j−dimensional observed histograms for the symbolic-valued random variable S_j

• The symbolic j-wise composite likelihood function (SCL^(j)) is given by

$$L_{SCL}^{(j)}(\mathbf{s}_j;\theta) = \prod_{t=1}^T \prod_{\mathbf{i}} L(\mathbf{s}_{jt}^{\mathbf{i}};\theta)$$

• Components of the Godambe matrix are given by

$$\hat{H}(\hat{\theta}_{SCL}^{(j)}) = -\frac{1}{N} \sum_{t=1}^{T} \sum_{i} \nabla^{2} l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)})$$
$$\hat{J}(\hat{\theta}_{SCL}^{(j)}) = \frac{1}{N} \sum_{t=1}^{T} \left(\sum_{i} \nabla l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)}) \right) \left(\sum_{i} \nabla l(\mathbf{s}_{jt}^{i}; \hat{\theta}_{SCL}^{(j)}) \right)^{\top}$$

Simulation experiments: the set up

- K locations are generated uniformly on a (0,40) \times (0,40) grid
- N realisations of the Smith model are generated for each location
- $\bullet~\mbox{MLE's}$ are obtained using $\mbox{CL}^{(2)}$ and $\mbox{SCL}^{(2)}$

ACEM∫

Experiement 1 - Increasing the number of bins

•
$$N = 1000, \ K = 15, \ T = 1, \ \Sigma = \begin{bmatrix} 300 & 0 \\ 0 & 300 \end{bmatrix}$$
, Repetitions = 1000

Figure: Mean of MLEs for $\theta = (\sigma_{11}, \sigma_{12}, \sigma_{22}, \mu, \sigma, \xi)$ using $CL^{(2)}$ and $SCL^{(2)}$, for increasing number of bins in bivariate histograms.

B. Beranger(UNSW)

Experiement 2 - Computation time

• B = 25, K = 10, 100, T = 1, Repetitions = 10

	K = 10			K = 100		
Ν	t _c	ts	t _{hist}	t _c	ts	t _{hist}
100	9.8	18.6	0.7	9758.6	1594.5	72.3
500	27.6	26.2	0.8	45040.1	2218.8	74.2
1000	71.9	22.5	0.8	-	2238.0	78.8
5000	291.8	19.0	0.8	-	2650.2	81.7
10000	591.7	23.8	0.9	-	2356.6	85.8
50000	2626.8	24.2	1.7	-	2300.6	131.6
100000	5610.7	25.4	2.4	-	2766.9	188.2
500000	31083.1	23.2	7.5	-	3111.5	627.1

Table: Mean computation times (sec) to optimise the regular and symbolic composite likelihood (t_c and t_s), and to aggregate the data into bivariate histograms (t_{hist})

Experiement 3 - Convergence of variances (1)

• B = 25, N = 1000, K = 10, Number of repetitions = 1000

Т	σ_{11}	σ_{12}	σ_{22}	μ	σ	ξ
4	226.93	97.63	167.27	0.105	0.051	0.030
5	203.04	87.36	149.66	0.095	0.047	0.028
10	143.92	61.95	106.04	0.071	0.036	0.021
20	102.23	44.04	75.27	0.054	0.029	0.016
40	72.93	31.48	53.64	0.043	0.024	0.013
50	65.52	28.31	48.16	0.040	0.023	0.012
100	47.38	20.55	34.71	0.034	0.020	0.011
200	34.87	15.23	25.42	0.030	0.018	0.010
1000	21.12	13.08	13.11	0.025	0.016	0.010
Classic	16.65	10.53	10.69	0.020	0.014	0.009

Table: Mean variances calculated from $CL^{(2)}$ and $SCL^{(2)}$ for $\theta = (\sigma_{11}, \sigma_{12}, \sigma_{22}, \mu, \sigma, \xi)$ for increasing T.

Experiement 3 - Convergence of variances (2)

- $\hat{J}(\hat{\theta}_{SCL}^{(j)})$ requires $T \to N$ and $\mathbf{B} \to \infty$ for the convergence towards the classical Godambe matrices to occur.
- $\, \bullet \,$ For $\, {\cal T} \,$ fixed, convergence still occurs as ${\bf B} \rightarrow \infty$ towards a different expression

Figure: Mean variances calculated from $SCL^{(2)}$ for fixed T and increasing **B**.

Real data analysis: an overview

Maximum temperatures across Australia

• Data:

- Focus on fortnighly maxima at K = 105 locations over summer months
- 3 sets: historical (N = 970), RCP4.5 and RCP8.5 (both N = 540)

• Bivariate histograms are constructed for all pairs of locations for B = 15, 20, 25, 30.

Model fitting

• Fit the Smith model with mean and variance parameters as linear functions of space

	σ_{11}	σ_{12}	σ_{22}	ξ			
B	Historical Data						
15	176.4(0.285)	-28.7(0.032)	76.8(0.329)	-0.266(0.053)			
20	$164.2 \ (0.289)$	-29.3(0.030)	74.3(0.469)	-0.264(0.049)			
25	$162.4\ (0.217)$	-29.9(0.033)	75.3(0.284)	-0.264(0.049)			
30	161.6(0.201)	-32.3(0.029)	74.4(0.234)	-0.264(0.050)			
B	RCP4.5 Data						
15	160.9(0.942)	-34.1(0.083)	79.0(0.222)	-0.249(0.074)			
20	$163.5\ (0.595)$	-41.1(0.073)	77.6(0.245)	-0.249(0.076)			
25	150.3(0.349)	-33.1(0.065)	70.7(0.170)	-0.250(0.073)			
30	$150.2 \ (0.150)$	-31.6(0.024)	70.7(0.154)	-0.250(0.069)			
B	RCP8.5 Data						
15	128.7(0.860)	-19.6(0.092)	67.7(0.392)	-0.232(0.061)			
20	$128.0\ (0.630)$	-19.6(0.129)	66.6(0.332)	-0.231(0.059)			
25	$136.0\ (0.395)$	-15.1 (0.093)	59.4(0.317)	-0.234(0.060)			
30	129.9(0.401)	-13.6(0.083)	56.4(0.294)	-0.233(0.055)			

Figure: MLEs using the $SCL^{(2)}$ for various values of *B*.

Estimated location parameter

Figure: Estimated surfaces for the location parameter using the $I_{SCL}^{(2)}$ function (left) and marginal GEV estimations (right)

B. Beranger(UNSW)

RCP4.5 95 year maximum observed

Examples of return level plots

RCP4.5 95 year return level | B = 30

Figure: Estimated 95 year return levels using the $I_{SCL}^{(2)}$ function (left) and observed 95 year return levels (right)

Outline

What is Symbolic Data Analysis?

2) Existing and new SDA models

3 An example in EVT

Summary

• Completely new approach to SDA:

- Based on fitting underlying (classical) model ⇒ Much better!
- View latent (classical) data through symbols
- Recovers existing models for symbols but is more general
- Recovers classical model as $S \rightarrow x$
- Works for more general symbols than currently in use
- Illustration of practical use in extremes

Working on:

- Characterise trade-off between accuracy and computation
- Finalising procedure for distribution valued symbols (Gaussians, etc.)
- Design symbols for best performance

THANK YOU!

