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Rise of non-standard data forms

Standard statistical methods analyse classical
datasets

E.g. x1,...,x, where x; € X = RP
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Increasingly see non-standard data
forms for analysis.
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» Can arise as result of measurement
process
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> Blood pressure naturally recorded as
(low, high) interval
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> Particulate matter directly recorded
as counts within particle diameter
ranges i.e. histogram
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Example: Discretised data = histogram

Scatterplot with loess line
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> E.g. point (4.0, 0.0) actually lies within [3.95,4.05) x [—0.05, 0.05)

» Strong discretisation could have undesired inferential impact 4/32



Symbolic Data Analysis

> Established by Diday & coauthors in
1990s.

» Basic unit of data is a distribution
rather than usual datapoint.
e interval (a, b)
p-dim hyper-rectangle
histogram
weighted list etc.
can be complicated by “rules”

Distribattion of Height and Weight » Classical data are special case of
court symbolic data:

E.g. symbolic interval s = (a, b)
equivalent to classical data point x if
x=a=b.

Or histogram — {x;} as # bins — oo.

So symbolic analyses must reduce to
classical methods. 5/32




How do symbolic data arise?

Big data — small (symb) data
Easier to analyse (hopefully!)

Possible use in data privacy?
Individual can’t be indentified.

Statistical question:

How to do statistical analysis for this form of data? J

» Can arise naturally (measurement error):
E.g. blood pressure, particulate
histogram, truncation/rounding.

» ‘Big Data' context:

Symbolic data points can summarise
a complex & very large dataset in a
compact manner.

Retaining maximal relevant
information in original dataset.
Collapse over data not needed in
detail for analysis.

Summarised data have own internal
structure, which must be taken into
account in any analysis.
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How to analyse symbolic data?

A good idea in principle, however:
» Poorly developed in terms of inferential methods.

» Current approaches:

. (means, covariances)
= Methods based on 15t/2”d moments: clustering, PCA etc.

o (e.g. regression)
= Can be plain wrong for inference/prediction.

= Limited model-based inferences

>
= Need to move beyond uniformity (Lynne Billard)

Current SDA research:
Developing practical model-based (e.g. likelihood-based) procedures for
statistical inference using symbolic data for general symbols.
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EXBﬂngIﬂOddSfbrsymbOB(mmmmma&mmgmn
SE= (51,...,5‘1)T
E.g. For random intervals [a;, bi], i=1,...,n:
> Si=(aj,bi)"
> S; = (mj,logr)T"

Then specify a standard (classical data) model for Sy,...,S,. E.g.

Problems:
> Model unstable/collapses as a; — b; (classic data)

> How to fit equivalent models for classical data to symbols?
e Fit to means? How to account for variation? etc.

v

Symbols are summaries of classical data,
e Model can only predict symbols

v

Q: How to fit models and make predictions at the level of the
classical data, based on observed symbols?
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One possible approach

Define S = 7(X1.n) : [X]Y — S such that x;.y + 7(x.y) then,

L(5]6) / £(S|x. 6)L(x|8)dx

where
> — standard, classical data likelihood
> — explains mapping to S given classical data x
> — new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model, when the data are viewed only
through symbols S as summaries J

Example: No generative model L(x|0)

> 8(SIx,¢) = g(Sl¢) = L(S|0) = g(5]¢)

> Directly modelling symbol = existing likelihood approach
(Le Rademacher & Billard, 2011) v
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Modelling a random interval

Aggregation: S = w(Xy.y) i RNV — S = {(a1,a0) € R? : 2y < a} x N
such that xq.py +— (X(/),X(u), N).

Let s = (1,54, n) with 5; = X(y), s, = X(u) £ < v and x; ~ f(X|0):

L(s|f) /g(s\x,¢)L(x|e)dx

//(X(/) =5 & X(u) = Su) H f(x,|0)dX1,—,

J

= the joint distribution of £-th and u-th order statistics from f(x|0). v/

Symbolic — Classical check:
If s — s, = x and n =1 then L(s|0) = f(x|0). v
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Modelling a random rectangle

Aggregation: S=7a(Xen) RPN & S =
{(a1,32) € R?:a; < a}? x {2,...,min(4,n)} x T x N such that

xi:n = ((X),is X(n), i )i=1,2: P, 1(P), N).

» p: number of points involved in constructing the rectangle

> I(p) : locations of the points (taking values in T)

For s = (Smin, Smax Sp» SI,» 1)

Lsl) = —™ { / f(ze)dz} e,

(n _-Sp)!

Smin

> If s, =2 then s;, = (Smin, Smax) and £2 = f(Smin|0)f (Smax|0)-
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Aggregation:

Modelling a random rectangle

p=0.95
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Aggregation:

Modelling a random rectangle
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Modelling a random rectangle
Aggregation:

[ ]
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Modelling a histogram with random counts

Aggregation: S = m(Xy.y) : RN — 8 = {0,... N}B"*E’ such that
X1:N — (27:1 H{Xi S Bl}a RS 27:1 H{Xi € BB})

n=1000, bins=11 > Assume some fixed bins

Bi,...,Bg and let

9. s=(s1,...,58) , > ,Sb=n
g
’ » If the X; are iid then likelihood is
g S multinomial
3
- B
) L(s[0) o H
L where p,(7) o [, F(z]0)dz under
y - b
the model. v

> More complicated if data are not iid (Zhang, Beranger & Sisson,
2019)
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Modelling a histogram with random counts

Can recover classical likelihood as B — oo

I|m L(5]0) x Bllm sB' H [/ f( z|9)dz} = L(Xq,...,X,|0)

0051

So recover classical analysis as we approach classical data. v/

Can show that with a sufficient number of histogram
bins can perform analysis arbitrarily close to analysis with full
dataset.

Computationally scalable: Working with counts not computationally
expensive latent data.

Can consider histogram with random bins
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Density

0.3

0.2

0.1
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Fitting a GEV

n=1000, bins=11

v

v

- B p o §
tandard GEV
77 Symbole GEY 5 2977 7.675 4.091
10 1.385 1.030 0.916
20 1.278 0.762 0.682
1000 1.277 0.809 0.662
Standard | 1.268 0.725 0.547

Use R's hist command to construct histograms, n = 1,000

Use fgev command in evd package for standard approach

Accuracy increases with more bins

Accuracy close to using full dataset with only 20 bins
(No real advantage to 1000 bins over 20)
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Fitting a GEV

n 100 1K 10K 100K 1M 10M  100M
Standard 0.018 0.047 0.431 2.860 () (%) (*)
Symbolic (total) | 0.060 0.062 0.062 0.107 0.247 2217 42.994
Symbolic (hist) | 0.055 0.057 0.059 0.104 0.243 2209 42.943
Symbolic (mle) | 0.005 0.005 0.004 0.003 0.004 0.007 0.051

Standard initially faster than symbolic for small datasets ~ 1K

Symbolic scales much better > 1K

x = fgev crashed on my laptop!

However, most time for symbolic on histogram construction

Actual symbolic optimisation super fast (obviously)

Possible laptop caching problems around 100M

Faster ways to construct histogram counts than hist for really large

datasets (e.g. map-reduce using DeltaRho)
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Spatial Extremes

Bureau of Meteorology, New South Wales & L 4

@BOM_NSW Bureau of Meteorology, Australia & L 4
Fri marks peak day for some of #NSW most heavily populated @BOM_au
areas.Temps in western #Sydney well into the 40's, regional "Severe to extreme heatwave conditions across the southeast
western towns similar after many broke records this week, CBD interior". Temperatures exceeding 450C for many locations
likely to have 5th consecutive day above 30 for 1st time in 8 yrs through western NSW and central Australia this afternoon.

ow.ly/E9QY50ke617 #heatwave Latest at ow.ly/3W6s30nirdY

WEDNESDAY

QO 59 4:23PM - Jan 17, 2019 (]

> What is the maximum value that a process (Temperature) is
expected to reach over some region of interest (NSW /Australia)
within the next 20, 50 years?
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Spatial Extremes
are a useful tool to analyse Spatial Extremes

For e.g. the d.f. of the Gaussian max-stable process model

P(Yi(t) < y1..., Y(t) < yk) = exp Z Op 1(60 );ZU)>
=1 i

The d.f. of such models becomes rapidly intractable with the
number of spatial locations

Still unfeasible for a large number of locations and temporal
observations!!
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Composite symbolic likelihood

» Consider we are only interested in a subset of size j of the K
dimensions

> Let b' be the subset of b defining the coordinates of a
j—dimensional histogram bin and let B' = (B, ... B") be the
vector of the number of marginal bins.

he symbolic likelihood function associated with the vector of counts
st = (s}i,....5g) of length B x ... x Bl is

where Pi(0) = fTbl ng gx(x; 0)dx and gx is a j—dim density.
Vl Ij
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Composite symbolic likelihood

>sj:{ t=1,..., T,i=(h,...,0[;),h <...<ij} represents the
set Of_j dimensional observed histograms for the symbolic-valued
random variable S;

> The is given
by

> Components of the Godambe matrix are given by

SCL szvz jf’ SjéL
i
1 N
0=ty (z Vi 00,) ) (z TR )

t:l
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Spatial Extremes - Example

» Consider observations at spatial locations and

random histogram

» Spatial dependence of Gaussian max-stable model is 077 = 300,
012 = 0 and 020 = 300

B o011 012 022
2 3355 (585.5) 57 (2322) 3172 (1251)
3 301.0 (345)  -0.1(16.9)  301.9 ( 33.5)
5 2091 (23.1)  -09(132)  299.9 ( 24.1)
10 2098 (202)  -05(11.1)  300.0 ( 20.9)
15 299.8 (18.9)  -0.3(10.4)  300.0 ( 19.5)
25 299.7 (18.0)  -0.3(10.0)  300.2 ( 18.9)
Classic | 300.76 (17.1)  -0.4 (9.7)  301.02 (18.1)

Table: Mean (and standard errors) of the symbolic composite MLE é(SQC)L and composite MLE é(ch) (Classic)
from 1000 replications of the Gaussian max-stable process model, for B X B histograms for varying values of B.
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Spatial Extremes - Example

» Consider bins, spatial locations and
random histogram. Repetitions = 10

N K =10 K =100
tc ts thistbrR  thistR | tc ts thistDR thistR
1000 719 225 0.8 0.1 | - 22380 78.8 12.0
5000 291.8 19.0 0.8 03 | - 26502 81.7 30.9
10000 591.7 238 0.9 05 | — 2356.6 85.8 54.1
50000 2626.8 24.2 1.7 21 | - 23006 131.6 237.0
100000 | 5610.7 25.4 2.4 42 | — 27669 188.2 461.8
500000 | 31083.1 23.2 7.5 206 | — 31115 627.1 22435

Table: Mean computation times (seconds) for different components involved in computing é(CZL) and égzch

AA

> J(Hgg,_) requires T — N and B — oo for the convergence towards
the classical Godambe matrices to occur.

» For T fixed, convergence still occurs as B — oo towards a different
expression
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Classification
> (response), (explanatory)

» Multinomial Logistic Regression: for realisations x € IRP*N,
y € QN parameters B € R(PHVXK the likelihood is given by

Lni(x,y; B) = H TT Pu(Y = KkIX = xp)t =3,

n=1keQ
where
eBrot+Bi X
Pu(Y = k|X) = - ZjeQ\{K} o+ X
> : One-vs-rest
> : YPred = argmaxycq Prodal(Y = k|IX = X,), Vn
> . pAModel _ 1 Zn LI{YPred =y}
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Classification

Let X*K) = (X,|Y, =k,n=1,..., N) c RP*M
If N = SN 1{Y, = k} is huge then X¥) can be

Histogram-valued symbol leads to likelihood

o= [T (f e

sbk
=k|X = X)dX)
keQ be=1y

k

Statistical improvement: mixture symbolic and classical
contributions

Computational improvements: Composite Likelihood (again!) but
requires some adjustment.
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Classification - Example

Use a which consists of:

e Binary response (K = 2): signal process (which produces
supersymmetric particles) vs background process

e N =5 million observations

e D = 18 features (8 kinematic properties, 10 functions)

Comparison with method (Wang et al., 2018)
Training data: 4500000 obs.

Test data: 500000 obs.

We consider the following:

)

e Marginal composite likelihood
e Histogram with random bins

e Histogram with random counts
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Classification - Example

Bins
Likelihood 6 8 10 ¥ 15 20 %
1N 749 759 766 777 781 779 781
(1L7) (145) (122) (15.0) (189) (213) (27.6)
L5 744 735 758 778 774 780 780

(133) (12.6) (115) (13.9) (16.8) (18.0) (21.4)

Table: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using
histograms with B bins per margins.

> Wang et al. (2018) obtain a prediction accuracy of with a
computation time of seconds.

» Simulation study: as good or better prediction accuracy, shorter
computation time

» Sub-sampling will produce better MSE of the regression coefficients.
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Summary

Based on fitting underlying (classical) model

e Radically different approach to existing SDA methods
e Ours is much better!

Views latent (classical) data through symbols
Recovers known existing models for symbols but is more general

Works for more general symbols than currently in use

Implement more sophisticated statistical techniques using Symbols
(Tom’s PhD)

Characterise impact of using symbols on accuracy
e Trade-off of accuracy vs computation
Design of symbols for best performance
e Histogram setting: How many bins? Bin locations?
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How to design symbolic data?

(a) Regular discretisation (b) Quantile discretisation (c) Tails focused discretisation

How to design symbols to most efficiently represent dataset without
(much) loss of critical information?

E. g. Linear regression with 10 million datapoints.
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» New models for symbolic data. Beranger, Lin & Sisson.
https://arxiv.org/pdf/1805.03316.pdf.

> Composite likelihood methods for histogram-valued random
variables. Whitaker, Beranger & Sisson.
https://arxiv.org/pdf/1908.11548.pdf.

> Logistic regression models using aggregated data. Whitaker,
Beranger & Sisson. In prep.

B.Beranger@unsw.edu.au
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