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Rise of non-standard data forms

Standard statistical methods analyse classical
datasets

E.g. x1, . . . , xn where xi ∈ X = Rp

However: Increasingly see non-standard data
forms for analysis.

Simple non-standard forms:

I Can arise as result of measurement
process

I Blood pressure naturally recorded as
(low, high) interval

I Particulate matter directly recorded
as counts within particle diameter
ranges i.e. histogram 0 1 2 3 4 5 6
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Example: Discretised data = histogram

 
I E.g. point (4.0, 0.0) actually lies within [3.95, 4.05)× [−0.05, 0.05)

I Strong discretisation could have undesired inferential impact 4/32



Symbolic Data Analysis
I Established by Diday & coauthors in

1990s.

I Basic unit of data is a distribution
rather than usual datapoint.

• interval (a, b)
• p-dim hyper-rectangle
• histogram
• weighted list etc.
• can be complicated by “rules”

I Classical data are special case of
symbolic data:

E.g. symbolic interval s = (a, b)
equivalent to classical data point x if
x = a = b.

Or histogram → {xi} as # bins →∞.

So symbolic analyses must reduce to
classical methods. 5/32



How do symbolic data arise?

Big data → small (symb) data
Easier to analyse (hopefully!)

Possible use in data privacy?
Individual can’t be indentified.

I Can arise naturally (measurement error):
E.g. blood pressure, particulate
histogram, truncation/rounding.

I ‘Big Data’ context:

• Symbolic data points can summarise
a complex & very large dataset in a
compact manner.

• Retaining maximal relevant
information in original dataset.

• Collapse over data not needed in
detail for analysis.

• Summarised data have own internal
structure, which must be taken into
account in any analysis.

Statistical question:

How to do statistical analysis for this form of data?
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How to analyse symbolic data?

A good idea in principle, however:

I Poorly developed in terms of inferential methods.

I Current approaches:

• Descriptive statistics (means, covariances)
⇒ Methods based on 1st/2nd moments: clustering, PCA etc.

• Ad-hoc approaches (e.g. regression)
⇒ Can be plain wrong for inference/prediction.

• Single technique for constructing likelihood functions
⇒ Limited model-based inferences

I Over-prevalence of models for intervals (a, b) & assuming uniformity
⇒ Need to move beyond uniformity (Lynne Billard)

Current SDA research:
Developing practical model-based (e.g. likelihood-based) procedures for
statistical inference using symbolic data for general symbols.
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Existing models for symbols (Le Rademacher & Billard, 2011)

Symbol: S = (S1, . . . ,Sd)>

E.g. For random intervals [ai , bi ], i = 1, . . . , n:

I Si = (ai , bi )
>

I Si = (mi , log ri )
>

Then specify a standard (classical data) model for S1, . . . ,Sn. E.g.

(mi , log ri )
> ∼ N(µ,Σ)

Problems:

I Model unstable/collapses as ai → bi (classic data)

I How to fit equivalent models for classical data to symbols?

• Fit to means? How to account for variation? etc.

I Symbols are summaries of classical data, S = π(X1, . . . ,XN)

• Model can only predict symbols

I Q: How to fit models and make predictions at the level of the
classical data, based on observed symbols?
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One possible approach (Beranger, Lin & Sisson, Submitted)

Define S = π(X1:N) : [X ]N → S such that x1:N 7→ π(x1:N) then,

L(S |θ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

where

I L(x |θ) – standard, classical data likelihood

I g(S |x , φ) – explains mapping to S given classical data x

I L(S |θ) – new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model, when the data are viewed only
through symbols S as summaries

Example: No generative model L(x |θ)

I g(S |x , φ) = g(S |φ) ⇒ L(S |θ) = g(S |φ)

I Directly modelling symbol = existing likelihood approach
(Le Rademacher & Billard, 2011) X
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Modelling a random interval

Aggregation: S = π(X1:N) : RN → S = {(a1, a2) ∈ R2 : a1 ≤ a2} × N
such that x1:N 7→ (x(l), x(u),N).

Let s = (sl , su, n) with sl = X(`), su = x(u) ` < u and xj ∼ f (X |θ):

L(s|θ) ∝
∫
x

g(s|x , φ)L(x |θ)dx

=

∫
I (X(l) = sl & X(u) = su)

∏
j

f (Xj |θ)dX1:n

=
n!

(`− 1)!(u − `− 1)!(n − u)!
f (sl |θ)f (su|θ)F (sl |θ)`−1

× [F (su|θ)− F (sl |θ)]u−`−1 [1− F (su|θ)]n−u

⇒ the joint distribution of `-th and u-th order statistics from f (x |θ). X

Symbolic → Classical check:
If sl → su = x and n = 1 then L(s|θ) = f (x |θ). X
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Modelling a random rectangle

Aggregation: Marginal maxima and minima S = π(X1:N) : R2×N → S =

{(a1, a2) ∈ R2 : a1 ≤ a2}2 × {2, . . . ,min(4, n)} × T × N such that
x1:N 7→

(
(x(1),i , x(n),i )i=1,2, p, I (p),N

)
.

I p: number of points involved in constructing the rectangle

I I (p) : locations of the points (taking values in T )

For s = (smin, smax, sp, sIp , n)

L(s|θ) =
n!

(n − sp)!

[∫ smax

smin

f (z |θ)dz

]n−sp
× `sp .

I If sp = 2 then sIp = (smin, smax) and `2 = f (smin|θ)f (smax|θ).
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Modelling a random rectangle

Aggregation: Marginal maxima and minima

ρ = 0.95
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Modelling a random rectangle

Aggregation: Marginal maxima and minima

ρ = -0.6
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Modelling a random rectangle

Aggregation: Marginal maxima and minima

ρ = 0
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Modelling a histogram with random counts

Aggregation: S = π(X1:N) : Rd×N → S = {0, . . . ,N}B1×···×Bd

such that

x1:N 7→
(∑n

i=1 I{xi ∈ B1}, . . . ,
∑n

i=1 I{xi ∈ BB}
)

n=1000, bins=11
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I Assume some fixed bins
B1, . . . ,BB and let
s = (s1, . . . , sB)>,

∑
b sb = n

I If the Xi are iid then likelihood is
multinomial:

L(s|θ) ∝ n!

s1! . . . sB !

B∏
b=1

pb(θ)sb

where pb(θ) ∝
∫
Bb

f (z |θ)dz under
the model. X

I More complicated if data are not iid (Zhang, Beranger & Sisson,
2019)
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Modelling a histogram with random counts

I Can recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

n!

s1! . . . sB !

B∏
b=1

[∫
Db

f (z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

So recover classical analysis as we approach classical data. X

I Consistency: Can show that with a sufficient number of histogram
bins can perform analysis arbitrarily close to analysis with full
dataset.

I Computationally scalable: Working with counts not computationally
expensive latent data.

I Can consider histogram with random bins
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Fitting a GEV

n=1000, bins=11
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Mean MSE ×10−3 (1000 reps)
B µ σ ξ
5 2.977 7.675 4.091

10 1.385 1.030 0.916
20 1.278 0.762 0.682

1000 1.277 0.809 0.662
Standard 1.268 0.725 0.547

I Use R’s hist command to construct histograms, n = 1, 000

I Use fgev command in evd package for standard approach

I Accuracy increases with more bins

I Accuracy close to using full dataset with only 20 bins
(No real advantage to 1000 bins over 20)

17/32



Fitting a GEV

Time in seconds
n 100 1K 10K 100K 1M 10M 100M

Standard 0.018 0.047 0.431 2.860 (∗) (∗) (∗)
Symbolic (total) 0.060 0.062 0.062 0.107 0.247 2.217 42.994
Symbolic (hist) 0.055 0.057 0.059 0.104 0.243 2.209 42.943
Symbolic (mle) 0.005 0.005 0.004 0.003 0.004 0.007 0.051

I Standard initially faster than symbolic for small datasets ∼ 1K

I Symbolic scales much better > 1K

I ∗ = fgev crashed on my laptop!

I However, most time for symbolic on histogram construction

I Actual symbolic optimisation super fast (obviously)

I Possible laptop caching problems around 100M

I Faster ways to construct histogram counts than hist for really large
datasets (e.g. map-reduce using DeltaRho)

18/32



Spatial Extremes

I What is the maximum value that a process (Temperature) is
expected to reach over some region of interest (NSW/Australia)
within the next 20, 50 years?

I Whitaker, Beranger & Sisson (2019, Submitted)
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Spatial Extremes

I Max-stable processes are a useful tool to analyse Spatial Extremes

I For e.g. the d.f. of the Gaussian max-stable process model

P(Y1(t) ≤ y1, . . . ,YK (t) ≤ yK ) = exp

−
K∑
j=1

1

yj
ΦK−1

(
c(j)(y); Σ(j)

)
I The d.f. of such models becomes rapidly intractable with the

number of spatial locations
=⇒ Composite Likelihood methods (Padoan et al., 2010)

I Still unfeasible for a large number of locations and temporal
observations!!
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Composite symbolic likelihood

I Consider we are only interested in a subset of size j of the K
dimensions

I Let bi be the subset of b defining the coordinates of a
j−dimensional histogram bin and let Bi = (B i1 , . . . ,B ij ) be the
vector of the number of marginal bins.

'

&

$

%

The symbolic likelihood function associated with the vector of counts
sij = (s i1i , . . . , s

i
Bi) of length B i1 × · · · × B ij is

L(sij ; θ) = N!
s i
1i

!···s i
Bi

!

∏Bi

bi=1i Pbi(θ)s
i
bi ,

where Pbi(θ) =
∫

Υ
i1
bi1

. . .
∫

Υ
ij
bij

gX (x ; θ)dx and gX is a j−dim density.
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Composite symbolic likelihood

I sj = {sijt ; t = 1, . . . ,T , i = (i1, . . . , ij), i1 < . . . < ij} represents the
set of j−dimensional observed histograms for the symbolic-valued
random variable Sj

I The symbolic j−wise composite likelihood function (SCL(j)) is given
by

L
(j)
SCL(sj ; θ) =

T∏
t=1

∏
i

L(sijt ; θ)

I Components of the Godambe matrix are given by

Ĥ(θ̂
(j)
SCL) = − 1

N

T∑
t=1

∑
i

∇2l(sijt ; θ̂
(j)
SCL)

Ĵ(θ̂
(j)
SCL) =

1

N

T∑
t=1

(∑
i

∇l(sijt ; θ̂
(j)
SCL)

)(∑
i

∇l(sijt ; θ̂
(j)
SCL)

)>
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Spatial Extremes - Example

I Consider N = 1 000 observations at K = 15 spatial locations and
T = 1 random histogram

I Spatial dependence of Gaussian max-stable model is σ11 = 300,
σ12 = 0 and σ22 = 300

B σ11 σ12 σ22
2 335.5 (585.5) 5.7 (232.2) 317.2 (125.1)
3 301.0 ( 34.5) -0.1 ( 16.9) 301.9 ( 33.5)
5 299.1 ( 23.1) -0.9 ( 13.2) 299.9 ( 24.1)

10 299.8 ( 20.2) -0.5 ( 11.1) 300.0 ( 20.9)
15 299.8 ( 18.9) -0.3 ( 10.4) 300.0 ( 19.5)
25 299.7 ( 18.0) -0.3 ( 10.0) 300.2 ( 18.9)

Classic 300.76 (17.1) -0.4 (9.7) 301.02 (18.1)

Table: Mean (and standard errors) of the symbolic composite MLE θ̂
(2)
SCL

and composite MLE θ̂
(2)
CL

(Classic)
from 1000 replications of the Gaussian max-stable process model, for B × B histograms for varying values of B.
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Spatial Extremes - Example

I Consider B = 25 bins, K = 10, 100 spatial locations and T = 1
random histogram. Repetitions = 10

N
K = 10 K = 100

tc ts thistDR thistR tc ts thistDR thistR
1 000 71.9 22.5 0.8 0.1 – 2 238.0 78.8 12.0
5 000 291.8 19.0 0.8 0.3 – 2 650.2 81.7 30.9

10 000 591.7 23.8 0.9 0.5 – 2 356.6 85.8 54.1
50 000 2 626.8 24.2 1.7 2.1 – 2 300.6 131.6 237.0

100 000 5 610.7 25.4 2.4 4.2 – 2 766.9 188.2 461.8
500 000 31 083.1 23.2 7.5 20.6 – 3 111.5 627.1 2 243.5

Table: Mean computation times (seconds) for different components involved in computing θ̂
(2)
CL

and θ̂
(2)
SCL

.

Note: convergence of the variances

I Ĵ(θ̂
(j)
SCL) requires T → N and B→∞ for the convergence towards

the classical Godambe matrices to occur.

I For T fixed, convergence still occurs as B→∞ towards a different
expression
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Classification

I Y ∈ Ω = {1, . . . ,K} (response), X ∈ IRD (explanatory)

I Multinomial Logistic Regression: for realisations x ∈ IRD×N ,
y ∈ ΩN , parameters βββ ∈ IR(D+1)×K , the likelihood is given by

LM(x, y ;βββ) =
N∏

n=1

∏
k∈Ω

PM(Y = k |X = xn)1{yn=k},

where

PM(Y = k |X ) =
eβk0+β>

k X

1 +
∑

j∈Ω\{K} e
βj0+β>

j X
.

I Other model: One-vs-rest

I Prediction: Y Pred
n = argmaxk∈Ω PModel(Y = k |X = Xn), ∀n

I Prediction accuracy: PAModel = 1
N

∑N
n=1 1{Y Pred

n = Yn}
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Classification

I Let X(k) = (Xn|Yn = k , n = 1, . . . ,N) ∈ IRD×Nk

I If Nk =
∑N

n=1 1{Yn = k} is huge then X(k) can be aggregated

I Histogram-valued symbol leads to likelihood

LSM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
ΥΥΥbk

PM(Y = k |X = x)dx

)sbk

I Statistical improvement: mixture symbolic and classical
contributions

I Computational improvements: Composite Likelihood (again!) but
requires some adjustment.
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Classification - Example

I Use a Supersymmetric (SUSY) benchmark dataset which consists of:

• Binary response (K = 2): signal process (which produces
supersymmetric particles) vs background process

• N = 5 million observations
• D = 18 features (8 kinematic properties, 10 functions)

I Comparison with optimal sub-sampling method (Wang et al., 2018)

I Training data: 4 500 000 obs.

I Test data: 500 000 obs.

I We consider the following:

• One-vs-Rest model
• Marginal composite likelihood

• Histogram with random bins L
(1)
OO

• Histogram with random counts L
(1)
SO
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Classification - Example

Bins
Likelihood 6 8 10 12 15 20 25

L
(1)
OO 74.9 75.9 76.6 77.7 78.1 77.9 78.1

(11.7) (14.5) (12.2) (15.0) (18.9) (21.3) (27.6)

L
(1)
SO 74.4 73.5 75.8 77.8 77.4 78.0 78.0

(13.3) (12.6) (11.5) (13.9) (16.8) (18.0) (21.4)

Table: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using
histograms with B bins per margins.

I Wang et al. (2018) obtain a prediction accuracy of 78.2 with a
computation time of 86.1 seconds.

I Simulation study: as good or better prediction accuracy, shorter
computation time

I Sub-sampling will produce better MSE of the regression coefficients.
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Summary

Completely new approach to SDA:
I Based on fitting underlying (classical) model

• Radically different approach to existing SDA methods
• Ours is much better!

I Views latent (classical) data through symbols

I Recovers known existing models for symbols but is more general

I Works for more general symbols than currently in use

Still to do/Working on:
I Implement more sophisticated statistical techniques using Symbols

(Tom’s PhD)

I Characterise impact of using symbols on accuracy

• Trade-off of accuracy vs computation

I Design of symbols for best performance

• Histogram setting: How many bins? Bin locations?
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How to design symbolic data?

(a) Regular discretisation (b) Quantile discretisation (c) Tails focused discretisation

How to design symbols to most efficiently represent dataset without
(much) loss of critical information?

E. g. Linear regression with 10 million datapoints.
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THANK YOU

Manuscripts:

I New models for symbolic data. Beranger, Lin & Sisson.
https://arxiv.org/pdf/1805.03316.pdf.

I Composite likelihood methods for histogram-valued random
variables. Whitaker, Beranger & Sisson.
https://arxiv.org/pdf/1908.11548.pdf.

I Logistic regression models using aggregated data. Whitaker,
Beranger & Sisson. In prep.

Contact:
B.Beranger@unsw.edu.au
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