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Motivation

Bureau of Meteorology, New South Wales & L 4

@BOM_NSW Bureau of Meteorology, Australia &
Fri marks peak day for some of #NSW most heavily populated @BOM_au
areas.Temps in western #Sydney well into the 40's, regional "Severe to extreme heatwave conditions across the southeast
western towns similar after many broke records this week, CBD interior". Temperatures exceeding 450C for many locations
likely to have 5th consecutive day above 30 for 1st time in 8 yrs through western NSW and central Australia this afternoon.

ow.ly/E9QY50ke617 #heatwave Latest at ow.ly/3W6s30nirdY

WEDNESDAY

Temperature

QO 59 4:23PM - Jan 17, 2019 L]

v

What is the maximum value that a process (Temperature) is expected to
reach over some region of interest (NSW /Australia) within the next 20,
50 years?

L 4
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Max-stable processes

» Max-stable processes are a useful tool to analyse spatial extremes.

X1, X2, ..., be i.i.d replicates of X(s),s € S C R,

{max,':l ..... n %} cs L {Y(S)}SGS

for some continuous functions a,(s) > 0 and b,(s).

> Yy(s) be the limiting process with unit Fréchet margins

P{Yo(s)) < y(s).j €1} =exp{—Voly(s).j € )}
where

V(s e =d [ max () k),

w, J€! y(sj)
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Max-stable processes (2)

fSpectral representation ( )

Let {Ri},., be the points of a Poisson process on Rt with
intensity £r~(¢*Y £ > 0.
X =maxs(0, X(s)), 11" (s) = E[{X7(s)}*] < o0
X,i=1,2,... beiid copies of X*.
Then

\s a max-stable process with £-Fréchet 1-d distributions.

Y(s) = maxi12, ARX ()} /{u* (s)}/5, ses,

The exponent function is

Virs)se 1y = 5 ma{ 2T A

jel L ut(s)y(s)¢
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Max-stable models

1. Smith model ( ); Schlather model ( );
Brown-Resnick model ( );
2. Extremal-t ( ) Xi(s) are i.i.d. copies of a weakly stationary GP

with isotropic correlation function p(h);

3. Extremal skew-t ( ) Xi(s) are i.i.d. copies of a
(non-strictly stationary) skew-Normal process;

The exponent function of the extremal Skew-t model is

V{y(Sj),JEI} Zj 1)/ \Ud 1 [{qulel} J: j77_j*’V+1i|7

where V,_; is a d — 1-dimensional extended skew-t cdf.
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Inference

» Consider some locations z;,...,zg € S

/The full likelihood function is given by

L(z;0) = exp{—V(z:0)} Y pep, [Tits — Vi (z:0),

where:
Pa: set of all possible partitions M of {1,...,d}
[1: has elements 7,
\|77d: cardinality of Py corresponds to the d-th Bell number

Vi (+): partial derivatives of V(-) w.r.t mx.

~

J

= INTRACTABLE, even for moderate d.
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Inference (2)

K Composite likelihood ( ): \

CLi(2:0) = [T, o0 (eXP{=V(240)} x T, T Vi (24:6))

qc

Qg): set of all possible subset of size j of {1,...,d}

z4: j-dimensional subvector of z € IR
Pgy: set of all possible partitions of g where each partition I1 has elements 7
[: has elements 7,

\Vﬂk(): partial derivatives of V/(-) w.r.t mx. j

j=3: ,

Higher-order are more efficient but limited to d = 13:
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Composite likelihoods properties

/ Behaviour of composite MLE \

9%2 is asymptotically (N — o0) consistent and distributed as

VN (05{2 - 0) SN (o. G0 (o) 1)
where
o GCU(0) = HY(9)JV(0) T HY)(0) is Godambe information matrix
eHU () = —E(V2¢Y)(6; x)) is the sensitivity matrix

wm(e) — V(V£9)(6; x)) is the variability matrix. )

> For standard likelihoods j = d and H(#) = J(6) and so
G(0) = H(0) = 1(0) is the Fisher information matrix.
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Stephenson & Tawn likelihood

Time occurrences of each block maxima assumed known

0.15 0.20
| |

0.10
|

0.00
L

ST likelihood (Stephenson and Tawn,2005):
For each block i given by say z', an observed partition I’ is associated

ST(z;0) = exp{—V(z;0)} x ‘kllll —Vr, (z;0).
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Solution #1: Combining methodologies

Simple idea: Use the knowledge of time occurrences within the composite
likelihood framework.

Why would it work?

> Wadsworth (2015): second order bias correction = Requires

n>d(d—-1)/2.
» Huser et al. (2016): both methods can be highly biased in high
dimensions.

Bonus: Additional computational improvement
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Fast(er) cumulative distribution function evaluations

A necessity already highlighted by \Wadsworth and Tawn (2014),
Castruccio et al. (2016), de Fondeville and Davison (2018).

Skew-t cdf is a function of t cdf = quasi-Monte Carlo approximations

Idea:

* Control the error on the log-scale = fewer Monte Carlo simulations

* Evaluations of Wy_p,(-) in Vi, (z;0) are relatively more important than
those of Wy_1(-) in V(z;0).

* Set Nmi: minimum number of simulations

* Set Nmax: maximum number of simulations
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Simulation setup

» d = 20,50, 100 locations on region S = [-5,5] x [-5, 5]
» Extremal skew-t with v =1 and «; = a(si) = Bisia + P52
» n = 50 temporal replicates
» Power exponential correlation function
p(h) = exp{—(|lAll/r)’}, r>00<s<2
Smoothness s = 1,1.5,1.95 and range r = 1.5, 3,4.5 (spatial dependence)
> j=2,3,4,510,d
> log-error = 0.0001
» 500 replicates, run in parallel using 16 CPUs.

j 2,3 4,5 10 d(Typel) d (Type ll)
¥, () 100,1000 50,500 20,200 | 50,500 20, 200
W, () 10,100 5,50 2,20 5,50 2,20

Table: Number of quasi-Monte Carlo simulations Npin, Nmax to compute each
V;_m(-) and V;_y1(-) terms in Vi, (z; 0) for each j-wise composite likelihood.
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Approximation of the (full) ST likelihood

Measure: RMSE(0) = 1/b(f)? + sd(f)?

Type 7)j fi B Boj
d=50 n=1.00 | 0.034 0.211 0.216 0.176
1 0.042 0.266 0.189 0.196
n = 1.50 | 0.024 0.190 0.112 0.104
] 0.029 0.185 0.145 0.349
n = 1.95 | 0.003 0.081 0.215 0.214
I 0.004 0.095 0.282 0.269
d=100 n=1.00 | 0.031 0.203 0.090 0.085
1] 0.035 0.312 0.111 0.131
=1.50 | 0.019 0.122 0.051 0.045
1] 0.034 0.272 0.203 0.227
n =1.95 | 0.002 0.072 0.070 0.059
1] 0.004 0.102 0.274 0.274

Table: RMSEs when r = 3.0, 81 =5 and (3, = 5.

15/32



Approximation of the (full) ST likelihood (2)

Measure: Time (minutes)

d=50 d=100
$=1.00 s=1.50 s=1.95 $=1.00 s=1.50 s=1.95
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Figure: Mean time (in minutes) and 95% confidence region for the
maximisation of the extremal skew-t likelihood function, using the Type |
(black) and Type Il (grey) approximations.
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Performance of composite j-wise likelihoods

Focus on d = 20 case.

For j € {1,...,d} and some g € Qg) we define the weights as

u>0.

P if max; keqizk IS — skl < u
7710 otherwise

Evaluate statistical and computational efficiency via the
Time Root Relative Efficiency (TRRE) criterion:

\ _ RMSE(dy)  time(dy)
TRRE(6)) = RMSE(@;’) x time(éj-!)'

—> Values close to 1 indicate good performance of the j-wise likelihood.
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Performance of composite j-wise likelihoods (2)

n =1.00 n=1.50 n=1.095
j=2 04/06/05/04 05/03/04/03 04/02/04/03
j= 09/04/12/08 10/03/09/06 05/03,/09/06
j=4  21/15/21/10 12/12/13/08 07/17/14/10
j=5 10/04/07/04 09/02/06/05 14/25/11/08
j=10  15/19/10/12 18/26/19/14 16/26/10/10

Table: Time root relative efficiency (TRRE) of #;/7:/51;/B2; when r = 3.0.

Time (min)
Time (min)

0 063 126 189 252 3.14
0 064 128 193 257 321

Time (min)

=45

0 058 115 173 231 288

2 =3 j=4 =5 =10 j=d j=2 j=8 =4 =5 =10 j=d

=2 j=3 j=4 =5 =10 j=d

Figure: Average maximisation time (in mins) for the j-wise composite likelihood
function. Smoothness values n = 1,1.5 and 1.95 are represented by solid, dashed and

dotted lines.
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Aggregating data
Main idea borrowed from Symbolic Data Analysis

> Summarise a complex & very large dataset in a compact manner.

S =n(Xun) : [X]"V — S such that xi.y — 7(x1.n)
» Collapse over data not needed in detail for analysis.
A likelihood-based approach: (Beranger, Lin & Sisson, 2018)
L(51]0, ¢) x /.g(S\X. @) L(x|0)dx

where .
> [(x|0) — standard, classical data likelihood
> g(S|x, o) — probability of obtaining S given classical data x

> L[(5]0) — new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model L(x|6), when the data are
viewed only through symbols S as summaries.
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Specific case: Random histograms

Underlying data X;,... Xy € R? ~ g(x|0) collected into random counts

histogram, with fixed blns Bi,...,BsB.

Aggregation:
S = n(Xon) RN 8 =10, NPE B such that
o %0 o € B 557 o € Bo)).

1 if s, observations in bin b; for each b=1,...,

etk ={ 5 o
The symbolic likelihood is then (multinomial):

L(5|0): / (S|x) ngk\()dxxn(/ )

= generalises univariate result of McLachlan & Jones (1988). v/

B
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Specific case: Random histograms
Can recover classical likelihood as B — oo

Jim L(S0) oclim H V g(z|6) dz]Sb =L(X1,...,X:|0)

= recover classical analysis as we approach classical data. v’

B=5 B=10

-

coums_* 2 Counts Counts

4 2 0 2

o 6o mm 18 20 Loct % 60 s 1o Lt 01020 % 40 Loc

B=15 B=25 Classic

o

o T Loc 1 |

.h;
Loc2
4 2 0 2 4 6 8

Consistency: Can show that with a sufficient number of histogram bins can

perform analysis arbitrarily close to analysis with full dataset.
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Composite symbolic likelihoods

Limitations:

e Multivariate histograms become inefficient as d gets large — number of
bins to cover d dimensions accurately gets large fast.

e Calculating j'B/ 2(z|0)dz: has 2¢ components — viable for low d.

=—> One option: Composite likelihoods.

Consider j = 2, i.e. pairwise composite likelihood, we have

LE(s10) o [TTT L(Ss10)

ij>i

where Sj; is the bivariate marginal histogram for dimensions (i, ;) and

Sb
u&m«H(ﬁanbmmm).
b b

23/32



Composite symbolic likelihoods

From L(S|0) we have (for a single histogram):

0 is asymptotically consistent and distributed as

VN (6-0) = N (0, 1(9) )
when
o N —
o Number of bins — oo and volume of each bin — 0
(because then L(S|0) — L(x|6))

But when the bins (number and volume) are fixed then
VN (0 . ()) SN (??(04 bins), 72(6, B/ns)*l).

» Currently working on non-asymptotic (in bins) distribution of MLE
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Composite symbolic likelihoods

/ From Lg’gL(S|9) we have (for a single histogram):

when

o N —

e Number of bins — oo and volume of each bin — 0

GA(S%L is asymptotically consistent and distributed as

VN (88, - 6) = N (0, G(0)™)

N (because then L%, (S]0) — LU)(x]6))

~

/

But when the bins (number and volume) are fixed then, as before

VN (oggL - 0) SN (??(0. bins), 77(6, Bins)*).

» Similarly work in progress.
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Simulated spatial extremes

(Mean) Pairwise symbolic composite likelihood estimates ((j(ssz):

» Consider V = 1000 observations at K = 15 spatial locations and T = 1
random histogram

» Spatial dependence of Smith model is 011 = 300, 012 = 150 and o2, = 200

B o11 o012 022

2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2))
3 206.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9)
5 208.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4)
10 209.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9)
15 209.5 ( 18.7) 149.8 ( 11.6) 199.8 ( 12.1)
25 209.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9)

Ta ble: Mean (and standard errors) of the symbolic composite MLE é(S2C)L and composite MLE é(CZL) (Classic) from 1000 replications
of the Gaussian max-stable process model, for B X B histograms for varying values of B.

» As "bins — 00" performance approaches classical composite likelihood
(also estimated the marginal parameters).

> “Acceptable” results for B = 10
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Simulated spatial extremes

(Mean) Time comparisons for increasing N

» Consider B = 25 bins, K = 10, 100 spatial locations and 7 = 1 random
histogram. Repetitions = 10

N K =10 K =100
te ts thistbR  thistR | te ts thistDR thistR
1000 719 225 0.8 0.1 - 22380 78.8 12.0
5000 291.8 19.0 0.8 0.3 - 2650.2 81.7 30.9
10000 501.7 238 0.9 0.5 - 2356.6 85.8 54.1
50000 2626.8 24.2 1.7 21 - 23006 131.6 237.0
100000 5610.7 25.4 2.4 4.2 - 2766.9 1882 461.8
500000 | 31083.1 23.2 7.5 206 | — 31115 627.1 22435
Ta ble: Mean computation times (seconds) for different components involved in computing 95:22 and égsz

» Classical composite likelihood rapidly not feasible as spatial dimensions
increases (K = 20)

» Symbolic approach much more efficient
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Modelling Australian maximum temperature

» 105 spatial locations with temperature observation, over time
» Want to fit spatial model to temperature extremes.
> Lots of data:

e Can't fit using L(X|0) or LY} (X|6)

e Can form 105-dimensional histogram(!)

e L(S]60) is completely infeasible

e Solution 105x104/2 bivariate histograms
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Modelling Australian maximum temperatures (2)

The data:

e Historical observations (1850 — 2006)

e Simulated observations (2006 — 2100) from CSIRO Mk3.6 model with 2
scenarios: RCP4.5 and RCP8.5

e 90 days across summer months (DJF)

e 15-day blocks (6 obs per year)

e 1, and o modelled as functions of space

B | on 012 o2 ¢
Historical Data

20 | 164.2 (2.89) -29.3 (0.30) 74.3 (4.69) -0.264 (0.049)

25 | 162.4 (2.17) -29.9 (0.33) 75.3 (2.84) -0.264 (0.049)

30 | 161.6 (2.01) -32.3(0.29) 74.4 (2.34) -0.264 (0.050)

RCP4.5 Data

20 | 163.5(5.95) -41.1(0.73) 77.6 (2.45) -0.249 (0.076)

25 | 150.3 (3.49) -33.1(0.65) 70.7 (1.70) -0.250 (0.073)

30 | 150.2 (1.50) -31.6 (0.24) 70.7 (1.54) -0.250 (0.069)

RCP8.5 Data

20 | 128.0 (6.30) -19.6 (1.29) 66.6 (3.32) -0.231 (0.059)

25 | 136.0 (3.95) -15.1(0.93) 59.4 (3.17) -0.234 (0.060)

30 | 129.9 (4.01) -13.6 (0.83) 56.4 (2.94) -0.233 (0.055)

Table: Means and standard errors of the composite MLEs for the Smith model.
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Modelling Australian maximum temperatures (3)

RCP4.5 95 year return level | B = 30

: N

310

125 130 135 140 145
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Summary

2 solutions to fit max-stable models in high-dimensions

Solution #1:
> Time of occurrences should be recorded (mix CL and ST likelihoods);
> (Crude) Approximations of cdfs are essential;

> Application to 90-dim temperature data from Inner Melbourne region.

Solution #2:
» Aggregating data into histograms;
» Composite likelihood on histogram likelihood;

» Effect of number of histograms and allocation of micro-data data between
them;

» Comparing bivariate SCL and trivariate SCL;
> Application to 105-dim Australian temperature data.
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UNSW “VACEMS

THANK YOU

Relevent Manuscripts:
> Beranger B., A. G. Stephenson & S. A. Sisson (2020). High-dimensional inference using the extremal skew-t process.

Extremes, In press.

P Whitaker T., B. Beranger & S. A. Sisson (2020). Composite likelihood functions for hist lued random variables.
Stat. Comput., In press.
Contact:
B.Beranger@unsw.edu.au
www.borisberanger.com
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