Fast and flexible inference for spatial extremes

Peng Zhong, Scott A. Sisson, Boris Béranger

KAUST Statistics Workshop, 3 November 2025

Introduction

Broad context

- Interest in the extremes of a stochastic process X(s), $s \in S$.
- E.g. $X(\cdot)$ measures the amount rainfall at locations over Florida
- Goal: Model the dependence structure in spatial extremes
- What characterises an extreme event? → Tailored approach
- Focus on asymptotic dependent processes: max-stable and r-Pareto.

In this talk

- 1. Establish theoretical conditions for max-stable and r-Pareto models to have a continuous exponent measure
- 2. Derive two new max-stable and *r*-Pareto models
- 3. Provide a fast inference methodology using spectral likelihoods

Modelling framework for max-stable and r-Pareto processes

Theoretical & methodological results

Simulation experiements

Analysis of extreme rainfall over Florida

Max-stable processes

Definition (Schlather, 2002)

A max-stable process with unit Fréchet margins can be characterized as

$$Z(\mathbf{s}) = \sup_{i=1}^{\infty} R_i W_i(\mathbf{s}), \ \mathbf{s} \in \mathcal{S},$$

where $R_1, R_2, ...$, are the points of a PPP on $(0, \infty)$ and $W_1(\mathbf{s}), W_2(\mathbf{s}), ...$, are independent copies of a stochastic processes $W(\mathbf{s})$ on S with unit mean.

The exponent measure restricted onto \mathbb{R}^D_+ is given by

$$\kappa([\mathbf{0}, \mathbf{x}]^c) = \int_0^\infty 1 - \Pr(\mathbf{W} \in [\mathbf{0}, \mathbf{x}r]) dr, \quad \mathbf{x} \in \Omega,$$

where $\mathbf{W} = (\mathbf{W}(\mathbf{s}_1), \dots, \mathbf{W}(\mathbf{s}_D))^{\top}$ and $\Omega = \mathbb{R}^D_+ \setminus \{\mathbf{0}\}.$

The distribution function can be expressed as

$$G(\mathbf{x}) = \exp \{-\kappa([0, \mathbf{x}]^c)\} = \exp \{-V(\mathbf{x})\}.$$

Max-stable processes

Let $B_D = \{1, ..., D\}$ and $B_k = \{b_1, ..., b_k\} \subset B_D$, where $b_1 < \cdots < b_k$.

Let $\Omega_{B_k} = \{ \boldsymbol{x} \in \Omega : x_j = 0 \text{ if } j \notin B_k \}$ such that:

- $\partial\Omega = \{\Omega_{B_k}, \forall B_k \text{ and } k = 1, \dots, D-1\}$ represents the boundaries of Ω ,
- $\Omega^{\circ} = \Omega \setminus \partial \Omega$ denotes the Interior of Ω .

Important

Depending on the choice of W, the exponent measure κ can put mass on both $\partial\Omega$ and Ω° with the intensity function on each subspace Ω_{B_k}

$$\lim_{x_i \to 0, i \notin B_k} -V_{B_k}(\boldsymbol{x}), \quad V_{B_k} = \frac{\partial^k V}{\partial x_{b_1} \dots \partial x_{b_k}}.$$

On Ω° , it can be expressed as $\kappa(\mathbf{x}) = -V_{B_D}(\mathbf{x})$, where the function κ is referred to as the intensity function of the max-stable process.

Max-stable processes - Inference

Full likelihood: intractable!

Composite likelihood: Popular but still limited.

Stephenson-Tawn likelihood: Can be biased, moderate dimensions.

Spectral likelihood (Coles & Tawn, 1991)

If data \in MDA(Z) then can be approximately treated as points of a PPP with measure $\kappa(\cdot)$. For a model with parameter θ , the log-likelihood is

$$\ell_A(\boldsymbol{\theta}; \mathbf{x}_1, \dots, \mathbf{x}_n) \propto \sum_{i \in \{m: \|\mathbf{x}_m\|_1 > u\}} \log \kappa \left(\mathbf{x}_i; \boldsymbol{\theta}\right).$$

for some high enough threshold u.

This requires convergence of:

- a) X to the max-stable process Z by taking pointwise maxima.
- b) X to the Poisson point process.

The fact that κ can put mass on $\partial\Omega$ hinders the convergence of $X\Longrightarrow$ bias.

r-Pareto processes

Definition (Dombry & Ribatet, 2015)

Assuming the process X with unit Pareto margins satisfying $\lim_{u\to\infty} u \Pr(X/u \in B) = \kappa(B), \forall B \subset C^+(S)$, then the limiting process

$$\tilde{Z}(\mathbf{s}) = \lim_{u \to \infty} \frac{X(\mathbf{s})}{u} | r(\{X(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}) > u,$$

defines a simple *r*-Pareto process on $A_r = \{f \in C^+(S) : r(f) > 1\}$ with probability measure $\kappa(\cdot \cap A_r)/\kappa(A_r)$.

The finite dimensional density is therefore

$$\frac{\kappa(\mathbf{x})}{\kappa(\mathcal{A}_r^D)}, \quad \mathbf{x} \in \mathcal{A}_r^D,$$

where κ is the intensity function and \mathcal{A}_r^D is the set \mathcal{A}_r restricted to D dimensions.

r-Pareto processes - Inference

The log-likelihood is thus

$$\ell_{rP}\left(\boldsymbol{\theta}; \mathbf{x}_{1}, \dots, \mathbf{x}_{n}\right) = \sum_{i \in \{m: r(\mathbf{x}_{m}) > u\}} \log \left(\frac{\kappa\left(\mathbf{z}_{i}; \boldsymbol{\theta}\right)}{\kappa\left(\mathcal{A}_{r}; \boldsymbol{\theta}\right)}\right),$$

where $\mathbf{z}_i = \mathbf{x}_i/u$ represent the realizations of the *r*-Pareto process.

Important

- $\kappa(A_r; \theta)$ involves integration over \mathbb{R}^D_+ , \Longrightarrow intractability
- de Fondeville & Davison (2018):
 - \star Simplifications for specific choices of $r(\cdot)$.
 - * Score matching.
- $r(\mathbf{x}) = ||\mathbf{x}||_1 \Longrightarrow$ spectral likelihood.
- If the exponent measure κ has discontinuities (presence of mass on $\partial \mathcal{A}_r^D$), \Longrightarrow Inference requires evaluation of $-V_{B_k}(\mathbf{x})$.
 - * Restriction to the Brown-Resnick models

Modelling framework for max-stable and r-Pareto processes

Theoretical & methodological results

Simulation experiements

Analysis of extreme rainfall over Florida

Ensuring continuous exponent measures

Theorem 1 (Zhong, Sisson & Béranger, 2025)

Consider the max-stable process $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ defined at D locations and assume the partial derivatives of the function V exist.

The intensity function on $\partial\Omega$ is zero almost everywhere if and only if the conditional probability of $\textbf{\textit{W}}$ satisfies

$$\text{Pr}(\textbf{\textit{W}}_{\bar{B}_k} = \textbf{\textit{0}}_{D-k} \mid \textbf{\textit{W}}_{B_k} = \textbf{\textit{x}}_{B_k}) = 0, \; \forall \; k \in \{1, \dots, D-1\},$$

where $\mathbf{x}_{B_k} > \mathbf{0}_k$.

Interpretation: the behavior of V_{B_k} on $\partial\Omega$ is determined by the behavior of the process W on its lower-end boundary at zero.

Ensuring continuous exponent measures

Brown-Resnick: $W = \exp\left(\tilde{W} - \frac{\sigma^2}{2}\right)$ with \tilde{W} a centered Gaussian process

$$\begin{split} \left\{ \textbf{\textit{W}}_{\bar{\textit{B}}_{\textit{k}}} &= \textbf{\textit{0}}_{\textit{D}-\textit{k}} \mid \textbf{\textit{W}}_{\textit{B}_{\textit{k}}} = \textbf{\textit{x}}_{\textit{B}_{\textit{k}}} \right\} \\ \iff \left\{ \tilde{\textbf{\textit{W}}}_{\bar{\textit{B}}_{\textit{k}}} &= -\infty_{\textit{D}-\textit{k}} | \tilde{\textbf{\textit{W}}}_{\textit{B}_{\textit{k}}} = \log(\textbf{\textit{x}}_{\textit{B}_{\textit{k}}}) + \sigma^2/2 \right\}. \end{split}$$

The conditional distribution $\tilde{W}_{\bar{B}_k}|\tilde{W}_{B_k}$ is Gaussian \Longrightarrow Condition satisfied

skew extremal-t: $W = \max(\tilde{W}^{\nu}, 0)$ with \tilde{W} a skew-normal process, $\nu > 0$.

$$\begin{aligned} \{ \boldsymbol{W}_{\bar{B}_k} &= \mathbf{0}_{D-k} | \boldsymbol{W}_{B_k} = r \boldsymbol{x}_{B_k} \} \\ \iff \left\{ \tilde{\boldsymbol{W}}_{\bar{B}_k} \leq \mathbf{0}_{D-k} | \tilde{\boldsymbol{W}}_{B_k} = (r \boldsymbol{x}_{B_k})^{1/\nu} \right\}, \end{aligned}$$

This is not a null event \Longrightarrow Condition NOT satisfied

Extending current classes of max-stable and r-Pareto models

Theorem 2 (Zhong, Sisson & Béranger, 2025)

- a) skewed Brown-Resnick: Let $W(\mathbf{s}) = \exp\{Y(\mathbf{s}) a(\mathbf{s})\}$ where $Y(\mathbf{s})$ is a centred skew-normal process with scale matrix Σ with slant parameter α , and $a(\mathbf{s}) = \log \mathbb{E} [\exp\{Y(\mathbf{s})\}]$.
- b) truncated extremal-t: Let $W(\mathbf{s}) = \tilde{Y}(\mathbf{s})^{\nu}/a(\mathbf{s})$, with $\nu > 0$, $\tilde{Y}(\mathbf{s}) = Y(\mathbf{s})|Y(\mathbf{s}) > 0$, where $Y(\mathbf{s})$ is a centred Gaussian process with unit variances and $a(\mathbf{s}) = \mathbb{E}\left[\tilde{Y}(\mathbf{s})^{\nu}\right]$.

 \Longrightarrow Both models have no mass on $\partial\Omega$.

Comments:

- The sBR model has a non-stationary dependence structure.
- The intensity of the truncated extremal-t is somewhat difficult to compute...
- ullet Removal of the mass on $\partial\Omega$ increases the dependence strength

Extending current classes of max-stable and r-Pareto models

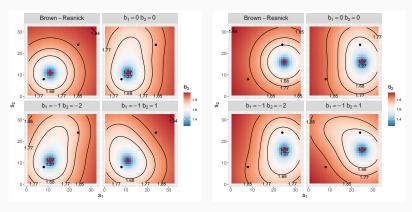


Figure 1: Bivariate extremal coefficient for the Brown-Resnick model and skewed Brown-Resnick model where $\eta_i = \sum_{j=1}^2 b_j K_j(\mathbf{s}_i) + 0.1 \operatorname{sgn}(\mathbf{s}_{2,i} \ge 16), i = 1, \dots, D$ using $(b_1, b_2) = (0, 0), (-1, -2)$ and (-1, -1). Black dots denote the kernel centres $\mathbf{s}_1^*, \mathbf{s}_2^*$. A red star indicates the reference point.

Improved inference for r-Pareto models

Where does the idea come from?

[Dombry, Legrand & Opitz (2024)] Using rejection sampling, one can generate samples from a r-Pareto process with risk functional r_2 from samples of a r-Pareto process associated with risk functional r_1 as long as $Mr_1(\cdot) \ge r_2(\cdot), M > 0$.

Focus: Observations $i \in \{m : r(\mathbf{x}_m) > u\}$

Proposal: use the likelihood of the L_1 -Pareto process to make inference about any r-Pareto process with a different risk functional by choosing a high threshold u > M.

This particularly applies to L_p norms, p > 1, since L_p bounds L_1 for finite p.

$$\Longrightarrow \|\cdot\|_1 \leq D^{1-1/p}\|\cdot\|_p, \ p>1$$

 \implies choose $u > D^{1-1/p}, p > 1$, to infer the L_p -Pareto process.

Benefit: Avoids to compute the normalising constant!!

Modelling framework for max-stable and r-Pareto processes

Theoretical & methodological results

Simulation experiements

Analysis of extreme rainfall over Florida

Simulation algorithm for r-Pareto processes

Current algorithm (Dombry et al., 2024)

Let
$$r_0(\cdot) = \|\cdot\|_1$$

 \hookrightarrow samples can be obtained as $\tilde{R}Y/\|Y\|_1$, where $\tilde{R} \sim \text{Pareto}(1)$.

For another risk functional $r_1(\cdot)$ be such that $r_1(\cdot) \leq Mr_0(\cdot)$

 \hookrightarrow samples can then be obtained by sampling $\tilde{\mathbf{Z}}$ from the process with risk functional $r_0(\cdot)$, and accepting a sample as $\tilde{\mathbf{Z}}/M$ when $r_1(\tilde{\mathbf{Z}}) \geq M$.

Comments:

- M = 1 when $r_1 = \| \cdot \|_{\infty}$
- $M = D^{p-2}$ when $r_1 = \|\cdot\|_p, p > 1$.
- Larger *M* implies lower acceptance probabilities.

Simulation algorithm for r-Pareto processes

Theorem 3 (Zhong, Sisson & Béranger, 2025)

Let $\tilde{\mathbf{Z}}^{(r_0)}$ be a *r*-Pareto process at *D* locations with $r_0(\cdot) = \|\cdot\|_1$.

Let $r(\cdot)$ be any convex risk functional, homogeneous of order 1, such that $r(\mathbf{0}) = 0$ and $r(\mathbf{e}_i) = 1/c_i > 0, i = 1, \dots, D$, where \mathbf{e}_i are standard basis vectors of dimension D.

The r-Pareto process with risk functional $r(\cdot)$ can be simulated as $\tilde{\mathbf{Z}}^{(r)} \stackrel{d}{=} c_0 \tilde{\mathbf{Z}}^{(r_0)} \mid r\left(\tilde{\mathbf{Z}}^{(r_0)}\right) > 1/c_0$, where $c_0 = \min\{\min_{i=1}^D c_i, 1\}$.

Comments:

- Considering $r(\cdot) = \|\cdot\|_p$, p > 1 gives $1/c_0 = 1$ instead of $M = D^{p-2}$ in Dombry et al (2024).
- $r(\mathbf{x}) = \sum_{i=1}^{D} m_i x_i, m_i \in [0, \infty], i = 1 \dots, D$, a linear convex combination, produces $c_0 = \min\{\min_{i=1}^{D} 1/m_i, 1\}$.

Simulation algorithm for *r*-Pareto processes

Table 1: Percentage of samples from 10^5 Brown-Resnick r-Pareto processes replicates with L_1 risk functional that fall into the acceptance region for $r(\cdot)$ being L_p , p=2,3,5,10, using the current and proposed methods (resp. left and right number in each cell). Dimension is D=4,16,64,100 and dependence structure is defined via a power-law semivariogram $\gamma(h)=h/\lambda$, $\lambda=2$, on the grid $[1,\sqrt{D}]^2$.

L_p/D	D=4	<i>D</i> = 16	D = 64	D = 100
p = 2	59/59	37/37	25/25	22/22
p = 3	13/52	1.80/29	0.27/18	0.19/16
p = 5	0.76/49	>0.01/26	0.00/16	0.00/14
p = 10	>0.01/47	0.00/25	0.00/15	0.00/13

Spectral likelihoods vs score matching

Setup:

- Generate n = 2,000 obs from the skewed Brown-Resnick model on a 15×15 grid (D = 225).
- Power-law semivariogram $\gamma(h) = (h/\lambda)^{\vartheta}$ with range $\lambda = 5, 10$ and smoothness $\vartheta = 1, 1.5$.
- Skewness represented through spline functions with 2 Gaussian kernel basis functions $(b_1, b_2) = (0, 0), (-1, -2), (-1, 1)$.
 - L_1 and L_3 risk functionals.
- An observation is considered extreme when exceeding the 95% empirical quantile of $r(X_1), \ldots, r(X_n)$.
 - 300 replicates.

Spectral likelihoods vs score matching

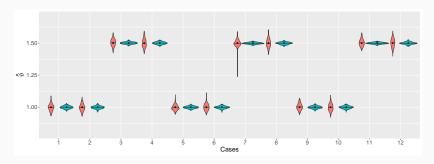


Figure 2: Violin plots for score matching (red) and spectral likelihood (blue) estimates of ϑ for the skewed Brown-Resnick *r*-Pareto process with L_3 norm risk functional. Black dots indicate the parameter true values.

- The spectral likelihood provides unbiased, low variability estimates.
- The score matching produces unbiased but more variable estimates.

Spectral likelihoods vs score matching

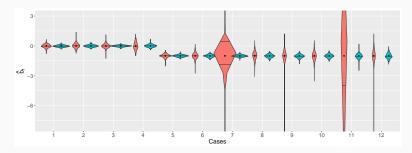


Figure 3: Violin plots for score matching (red) and spectral likelihood (blue) estimates of b_1 for the skewed Brown-Resnick r-Pareto process with L_3 norm risk functional. Black dots indicate the parameter true values.

- Score matching estimates can become numerically unstable (cases 7–12).
- Spectral likelihood is \sim 5 times faster than the score matching approach (141 versus 704 seconds on average using 3 CPU cores).

Modelling framework for max-stable and r-Pareto processes

Theoretical & methodological results

Simulation experiements

Analysis of extreme rainfall over Florida

Analysis of extreme rainfall over Florida

Data:

- <u>Location</u>: Tampa Bay area, Florida. Regular 2km grid with 4, 449 spatial observations.
- Measurements: radar images recorded at 15 minute intervals between 1995–2019 during the wet season (June–September). Total n = 139,881 images.
- Smaller version of the dataset analysed in de Fondeville & Davison (2018).
- Risk functions:
- $\to L_\infty$ norm: defines extremes events as locally intense rainfall events at any location within the region
- \rightarrow L_1 norm selects events with high cumulative rainfall over the whole region.

Analysis of extreme rainfall over Florida

Modelling:

- Brown-Resnick (BR) and skewed Brown-Resnick (sBR) with anisotropic semivariogram.
- Skewness of sBR expressed using 4 kernels.
- Fitting using score matching and spectral likelihood.

Outcomes:

- Brown-Resnick:
 - → Spectral likelihood and score matching provide consistent estimates.
 - \rightarrow Spectral likelihood is 80% (L_1 norm) and 18% (L_∞ norm) faster.
- Brown-Resnick vs skewed Brown-Resnick:
 - \rightarrow AIC favours the skewed Brown-Resnick for both L_1 and L_{∞} norms.

Analysis of extreme rainfall over Florida

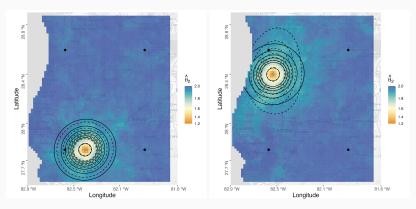


Figure 4: Maps of bivariate empirical extremal coefficients (shading) with respect to two different reference points, and contours of the extremal coefficient of the fitted sBR (dashed line) and BR (solid line) r-Pareto models with L_{∞} norm risk functional. Black dots denote the kernel centres used in the sBR model.

Conclusion

- Established condition ensuring the intensity function of a max-stable process only places mass on Ω° ;
 - → No discontinuities in the associated exponent measure;
 - \rightarrow Simplifying the evaluation of the density of the *r*-Pareto process.
- Likelihood-based inference can be successfully implemented via the spectral likelihood.
- Two new models: skewed Brown-Resnick and truncated Extremal-t.
- Improved rejection sampling algorithm for *r*-Pareto processes.

THANK YOU

