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Introduction

o Interest in the extremes of a stochastic process X(s),s € S.
E.g. X(-) measures the amount rainfall at locations over Florida

° Model the dependence structure in spatial extremes
e What characterises an extreme event? — Tailored approach

e Focus on asymptotic dependent processes: and

In this talk
1. Establish theoretical conditions for max-stable and r-Pareto models to

have a continuous exponent measure
2. Derive two new max-stable and r-Pareto models
3. Provide a fast inference methodology using spectral likelihoods
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Modelling framework for max-stable and r-Pareto processes
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Max-stable processes

A max-stable process with unit Fréchet margins can be characterized as

Z(s) = supRiW(s), s € S,
i=1

where Ry, Rz, . . ., are the points of a PPP on (0, co) and W;(s), Wa(s), . . .,
are independent copies of a stochastic processes W(s) on S with unit mean.

The exponent measure restricted onto ]RE’r is given by
k ([0,x]°) = / 1—Pr(W e [0,xr])dr, xe€Q,
0

where W = (W(s4),...,W(sp))" and Q@ = R? \ {0}.
The distribution function can be expressed as

G(x) = exp {—k([0.X]°)} = exp {~V(x)}.
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Max-stable processes

LetBp = {1,...,D} and By = {by,...,bx} C Bp, where by < - -+ < by.
Let Qg = {x € Q: x; = 0ifj ¢ By} such that:

0 90 = {Qp,,VBxandk = 1,...,D — 1} represents the boundaries of €,
e 0° = Q\ 09 denotes the Interior of Q.

Important

Depending on the choice of W, the exponent measure k can put mass on
both 02 and Q° with the intensity function on each subspace Qp,

okv
li — Vg, (x Vg, = ———.
x,-—)!)r,ri1¢Bk Bk( ), B (9Xb1 coo (9ka
On Q°, it can be expressed as x(x) = —Vp,(X), where the function & is

referred to as the intensity function of the max-stable process.
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Max-stable processes - Inference

Full likelihood:

Composite likelihood:

Stephenson-Tawn likelihood:

Spectral likelihood

If data € MDA(Z) then can be approximately treated as points of a PPP
with measure k(-). For a model with parameter 0, the log-likelihood is

La(0; X1, ..., Xn) X Z log k (x;; ) .

ie{m:||xm|[+>u}
for some high enough threshold u.
This requires convergence of:

X to the max-stable process Z by taking pointwise maxima.
X to the Poisson point process.
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r-Pareto processes

Assuming the process X with unit Pareto margins satisfying
limy— oo UPFr(X/u € B) = k(B),VB C C*(S), then the limiting process

Z(s) = lim ®|r({X(s),s €S}) > u,

u—o0 u

defines a simple r-Pareto process on A, = {f € C*(S) : r(f) > 1} with
probability measure k(- N A;)/k(A;).

The finite dimensional density is therefore

K(X) D
Ay XEA

where  is the intensity function and AP is the set A, restricted to D

dimensions.
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r-Pareto processes - Inference

The log-likelihood is thus
R (Z,'; 0)
bp (0;X1,...,Xy) = | — |,
rP( 1 I'l) . Z 0g(K(.A,,0))
ie{m:r(xm)>u}
where z; = X; /u represent the realizations of the r-Pareto process.

Important

« k (A; ) involves integration over R?, — intractability
e de Fondeville & Davison (2018):

+ Simplifications for specific choices of r(+).
* Score matching.

o r(x) = ||x||1 = spectral likelihood.

» If the exponent measure k has discontinuities (presence of mass on 9.AP),
—— Inference requires evaluation of —Vp, (X).

+ Restriction to the Brown-Resnick models
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Theoretical & methodological results
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Ensuring continuous exponent measures

Theorem 1

Consider the max-stable process {Z(s),s € S} defined at D locations and
assume the partial derivatives of the function V exist.

The intensity function on 0X2 is zero almost everywhere if and only if the

conditional probability of W satisfies
Pr(Wék = 0p_x | WBk :XBk) = 0, Vke {1,...,D— 1},

where xg, > 0.

Interpretation: the behavior of Vg, on 0X2 is determined by the behavior of
the process W on its lower-end boundary at zero.
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Ensuring continuous exponent measures

Brown-Resnick: W = exp (W — %2) with W a centered Gaussian process

{WEK = onk | WBk = XBk}
— {Wék = —oop_k|Wa, = log(xs,) + 02/2} -
The conditional distribution VNVBk | WBk is Gaussian = Condition satisfied
skew extremal-t : W = max(W",0) with W a skew-normal process, v > 0.
{Ws, = 0p_«|Ws, =rxz, }
< {ng < onklek = (I’XBK)1/V} s

This is not a null event —> Condition NOT satisfied

1126



Extending current classes of max-stable and r-Pareto models

a) skewed Brown-Resnick: Let W(s) = exp {Y(s) — a(s)} where Y(s) is
a centred skew-normal process with scale matrix ¥~ with slant parameter c,
and a(s) = logE [exp {Y(s)}].

b) truncated extremal-t: Let W(s) = Y(s)”/a(s), with v > 0,
Y(s) = Y(s)|Y(s) > 0, where Y(s) is a centred Gaussian process with
unit variances and a(s) = E [V(s)”}.

The sBR model has a non-stationary dependence structure.
The intensity of the truncated extremal-f is somewhat difficult to compute...

Removal of the mass on 02 increases the dependence strength
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Extending current classes of max-stable and r-Pareto models

Brown - Resnick Brown - Resnick

i
20 0 0 10 20 30
S1

Figure 1: Bivariate extremal coefficient for the Brown-Resnick model and skewed
Brown-Resnick model where 7; = 21.2:1 biK;i(si) + 0.1sgn(sz,; > 16),i=1,...,D
using (b1, b2) = (0,0), (=1, —2) and (—1, —1). Black dots denote the kernel
centres S7, S5. A red star indicates the reference point.
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Improved inference for r-Pareto models

‘Where does the idea come from?

[Dombry, Legrand & Opitz (2024)] Using rejection sampling, one can
generate samples from a r-Pareto process with risk functional r, from
samples of a r-Pareto process associated with risk functional r;y as long as
Mry(-) > ra(-),M > 0.

Observations i € {m: r(x,) > u}

use the likelihood of the L-Pareto process to make inference
about any r-Pareto process with a different risk functional by choosing a high
threshold u > M.

This particularly applies to L, norms, p > 1, since L, bounds L4 for finite p.
= |- <D'""VP|| - lp, p > 1

— choose u > D'~'/P_p > 1, to infer the Lp-Pareto process.

Avoids to compute the normalising constant!!
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Simulation experiements
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Simulation algorithm for r-Pareto processes

Current algorithm
Letro(-) = [ - [l1
— samples can be obtained as RY/||Y||1, where R ~ Pareto(1).

For another risk functional ry(+) be such that rq(-) < Mro(-)
— samples can then be obtained by sampling Z from the process with
risk functional ro(-), and accepting a sample as Z/M when r{(Z) > M.

M=1whenri = ||
M = DP~2whenry = || - ||p, p > 1.

Larger M implies lower acceptance probabilities.

16/26



Simulation algorithm for r-Pareto processes

Let Z(°) be a r-Pareto process at D locations with ro(-) = | - ||1.

Let r(-) be any convex risk functional, homogeneous of order 1, such that
r(0) =0andr(e;)) =1/c; > 0,i =1,...,D, where e; are standard basis
vectors of dimension D.

The r-Pareto process with risk functional r(-) can be simulated as
Z0) & ozt | (2<ro>) > 1/co, where ¢o = min{min2_, ¢;, 1}.

Considering r(:) = || - [|p, p > 1 gives 1/co = 1 instead of M = DP~2 in
Dombry et al (2024).
r(x) = Z,-D:1 mix;,m; € [0,00],i = 1...,D, alinear convex combination,

produces co = min{min’_, 1/m;, 1}.
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Simulation algorithm for r-Pareto processes

Table 1: Percentage of samples from 10° Brown-Resnick r-Pareto processes
replicates with Ly risk functional that fall into the acceptance region for r(-) being
Lp,p =2,8,5,10, using the current and proposed methods (resp. left and right
number in each cell). Dimension is D = 4, 16,64, 100 and dependence structure is
defined via a power-law semivariogram v(h) = h/\, A = 2, on the grid [1, v/D]?.

L,/D D=4 D=16 D=64 D=100
p=2 59/59 37/37 25/25 22/22
p=3 13/52 1.80/29  0.27/18  0.19/16

BELS 0.76/49  >0.01/26  0.00/16  0.00/14
p=10 >0.01/47 0.00/25  0.00/15  0.00/13
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Spectral likelihoods vs score matching

e Generate n = 2,000 obs from the skewed Brown-Resnick model on a
15 x 15 grid (D = 225).

e Power-law semivariogram ~y(h) = (h/\)” with range A\ = 5,10 and
smoothness ¢ = 1,1.5.

e Skewness represented through spline functions with 2 Gaussian kernel
basis functions (bq,b2) = (0,0), (-1, -2),(—1,1).

e [ 4 and L5 risk functionals.

e An observation is considered extreme when exceeding the 95%
empirical quantile of r(Xy), ..., r(X,).

¢ 300 replicates.
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Spectral likelihoods vs score matching
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Figure 2: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of ¥ for the skewed Brown-Resnick r-Pareto process with Lz norm risk
functional. Black dots indicate the parameter true values.

o The spectral likelihood provides unbiased, low variability estimates.
e The score matching produces unbiased but more variable estimates.
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Spectral likelihoods vs score matching
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Figure 3: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of by for the skewed Brown-Resnick r-Pareto process with Lz norm risk
functional. Black dots indicate the parameter true values.

e Score matching estimates can become numerically unstable (cases 7—12).

o Spectral likelihood is ~5 times faster than the score matching approach
(141 versus 704 seconds on average using 3 CPU cores).
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Analysis of extreme rainfall over Florida

22/26



Analysis of extreme rainfall over Florida

e [ocation: Tampa Bay area, Florida. Regular 2km grid with 4, 449 spatial
observations.

e Measurements: radar images recorded at 15 minute intervals between
1995-2019 during the wet season (June—September). Total n = 139, 881
images.

e Smaller version of the dataset analysed in de Fondeville & Davison (2018).
e Risk functions:

— L, norm: defines extremes events as locally intense rainfall events at
any location within the region

— L1 norm selects events with high cumulative rainfall over the whole
region.
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Analysis of extreme rainfall over Florida

o Brown-Resnick (BR) and skewed Brown-Resnick (sBR) with anisotropic
semivariogram.

e Skewness of sBR expressed using 4 kernels.

e Fitting using score matching and spectral likelihood.

Outcomes:

e Brown-Resnick:
— Spectral likelihood and score matching provide consistent estimates.
— Spectral likelihood is 80% (L1 norm) and 18% (L., norm) faster.

e Brown-Resnick vs skewed Brown-Resnick:

— AIC favours the skewed Brown-Resnick for both L4 and L., norms.
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Analysis of extreme rainfall over Florida
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Figure 4: Maps of bivariate empirical extremal coefficients (shading) with respect to
two different reference points, and contours of the extremal coefficient of the fitted
sBR (dashed line) and BR (solid line) r-Pareto models with L, norm risk functional.
Black dots denote the kernel centres used in the sSBR model.
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Conclusion

e Established condition ensuring the intensity function of a max-stable
process only places mass on 2°;

— No discontinuities in the associated exponent measure;
— Simplifying the evaluation of the density of the r-Pareto process.

e Likelihood-based inference can be successfully implemented via the
spectral likelihood.

e Two new models: skewed Brown-Resnick and truncated Extremal-t.

e Improved rejection sampling algorithm for r-Pareto processes.

THANK YOU

B https://arxiv.org/pdf/2407.13958
¥ B.Beranger@unsw.edu.au
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