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Motivation

Bureau of Meteorology, New South Wales & L 4
@BOM_NSW

Fri marks peak day for some of #NSW most heavily populated
areas.Temps in western #Sydney well into the 40's, regional
western towns similar after many broke records this week, CBD
likely to have 5th consecutive day above 30 for 1st time in 8 yrs
ow.ly/E9QY50ke6l7 #heatwave

WEDNESDAY

Temperature

QO 59 4:23PM - Jan 17,2019 ;)

Bureau of Meteorology, Australia & L 4
@BOM_au

"Severe to extreme heatwave conditions across the southeast
interior". Temperatures exceeding 450C for many locations

through western NSW and central Australia this afternoon.
Latest at ow.ly/3W6s30nirdY

T e, en

QO 18 6:11 PM - Jan 17, 2019 L]

» What is the maximum value that a process (Temperature) is expected to
reach over some region of interest (NSW /Australia) within the next 20,

50 years?
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Max-stable processes

» Max-stable processes are a useful tool to analyse spatial extremes.

X1, X2, ..., beiid replicates of X(s),s € S C R,

Xi(s)—bn(s d
{max;:1,__.,n %}563 — {Y(s)}ees

for some continuous functions a,(s) > 0 and bx(s).

> Yu(s) be the limiting process with unit Fréchet margins

P{Yo(s)) < y(s).j €1} =exp{—Voly(s).j )}
where _

Vo{y(s).j €1} =d / e <y<s,-)

w, J€l

) dH(w).
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Max-stable processes (2)

fSpectral representation ( )

Let {Ri},., be the points of a Poisson process on Rt with
intensity £r~(¢*Y £ > 0.
X =maxs(0, X(s)), 11" (s) = E[{X7(s)}*] < o0
X,i=1,2,... beiid copies of X*.
Then

\s a max-stable process with £-Fréchet 1-d distributions.

Y(s) = maxi12, ARX ()} /{u* (s)}/5, ses,

The exponent function is

Virs)se 1y = 5 ma{ 2T A

jel L ut(s)y(s)¢
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Max-stable models

1. Smith model ( ); Schlather model ( );
Brown-Resnick model ( );
2. Extremal-t ( ) Xi(s) are i.i.d. copies of a weakly stationary GP

with isotropic correlation function p(h);

3. Extremal skew-t ( ) Xi(s) are i.i.d. copies of a
(non-strictly stationary) skew-Normal process;

The exponent function of the extremal Skew-t model is
VAy(5).d € 1t = S s Voo [{ani € 1} i 500,77 v + 1],

where W,_; is a d — 1-dimensional extended skew-t cdf.
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Inference

» Consider some locations zi,...,zg € S

/The full likelihood function is given by \

L(z; 0) = exp{—V(z; 0)} ZHf—;Pd ‘klil — V(2 0),

where:
Pa: set of all possible partitions M of {1,...,d}
IM: has elements 74

|P4l: cardinality of Py corresponds to the d-th Bell number
KV’W('): partial derivatives of V/(-) w.r.t mx. j

= INTRACTABLE, even for moderate d.
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Inference (2)

K Composite likelihood ( ): \

CLi(2:0) = [T, o0 (eXP{=V(240)} x T, T Vi (24:6))

qc

Qg): set of all possible subset of size j of {1,...,d}

z4: j-dimensional subvector of z € IR
Pgy: set of all possible partitions of g where each partition I1 has elements 7
[: has elements 7,

\Vﬂk(): partial derivatives of V/(-) w.r.t mx. j

j=3: ,

Higher-order are more efficient but limited to d = 13:
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Composite likelihoods properties

-~

Behaviour of composite MLE

é(éz is asymptotically (N — oo) consistent and distributed as

where

o GU(0) = HY(9)JY(6) " HY)(0) is Godambe information matrix

VN (89 - 8) - N (0, V() )

eHU(0) = —E(V2£Y)(6; x)) is the sensitivity matrix

N

V(V£Y)(6; x)) is the variability matrix.

~

J

» For standard likelihoods j = d and H(#) = J(#) and so
G(0) = H(0) = 1(0) is the Fisher information matrix.
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Stephenson & Tawn likelihood

Time occurrences of each block maxima assumed known

0.15 0.20
| |

0.10
|

0.00
L

ST likelihood (Stephenson and Tawn,2005):
For each block i given by say z', an observed partition I’ is associated

ST(z;0) = exp{—V(z;0)} x ‘kllll —Vr, (z;0).
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Solution #1: Combining methodologies

Simple idea: Use the knowledge of time occurrences within the composite
likelihood framework.

Why would it work?

» \Wadsworth (2015): second order bias correction = Requires
n>d(d—-1)/2.

» Huser et al. (2016): both methods can be highly biased in high
dimensions (and strong dependence).

Bonus: Additional computational improvement
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Fast(er) cumulative distribution function evaluations

A necessity already highlighted by \Wadsworth and Tawn (2014),
Castruccio et al. (2016), de Fondeville and Davison (2018).

Skew-t cdf is a function of t cdf = quasi-Monte Carlo approximations

Idea:

* Control the error on the log-scale = fewer Monte Carlo simulations

* Evaluations of Wy_p,(-) in Vi, (z;0) are relatively more important than
those of Wy_1(-) in V(z;0).

* Set Nmi: minimum number of simulations

* Set Nmax: maximum number of simulations
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Simulation setup

d = 20,50, 100 locations on region S =[5, 5] x [—5, 5]
Extremal skew-t with v =1 and «; = «a(s;) = Bisii + Sasio

n = 50 temporal replicates

vVvyVvyy

Power exponential correlation function
p(h) = exp{—=([IAll/r)’}, r>00<s<2

Smoothness s = 1,1.5,1.95 and range r = 1.5, 3,4.5 (spatial dependence)
> j=2,3,4,510,d
log-error = 0.0001

v

» 500 replicates, run in parallel using 16 CPUs.

j 2,3 4,5 10 d (Type l) d (Type ll)
V;_n(-) 100,1000 50,500 20,200 50,500 20,200
w,_;() 10,100 5,550 2,20 5,50 2,20

Table: Number of quasi-Monte Carlo simulations N, Nyax to compute each
V;_m(-) and W;_1(-) terms in Vi, (z;6) for each j-wise composite likelihood.
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Approximation of the (full) ST likelihood

Measure: RMSE(f) = 1/b(f)? + sd(0)?

Type 5 Fi By Baj

d =50 s =1.00 | 0.034 0.211 0.216 0.176
1 0.042 0.266 0.189 0.196

s =1.50 | 0.024 0.190 0.112 0.104

1 0.029 0.185 0.145 0.349

s =1.95 | 0.003 0.081 0.215 0.214

1 0.004 0.095 0.282 0.269

d=100 s=1.00 | 0.031 0.203 0.090 0.085
1 0.035 0.312 0.111 0.131

s =1.50 | 0.019 0.122 0.051 0.045

1 0.034 0.272 0.203 0.227

s =1.95 | 0.002 0.072 0.070 0.059

1 0.004 0.102 0.274 0.274

Table: RMSEs when r = 3.0, 81 =5 and 3, = 5.
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Approximation of the (full) ST likelihood (2)

Measure: Time (minutes)

d=50 d=100
s=1.00 s=1.50 s=1.95 s=1.00 s=1.50 s=1.95

T T T T
B ' ' B ' '
' ' ' '
' ' ' '
T o | ] ] T o | ] ]
E - ' ' E - ' '
o ' ' > ' '
£ ' ' £ ' '
(ST 1 1 F oo A 1 1
' ' ' '
' ' ' '
' ' ' '
© ' ' ° -~ ' '

© o o © o o o ) © ) ) © © S © © o o

rororororrororor ey orororororu

Figure: Mean time (in minutes) and 95% confidence region for the
maximisation of the extremal skew-t likelihood function, using the Type |
(black) and Type Il (grey) approximations.
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Performance of composite j-wise likelihoods

Focus on d = 20 case.

Forje{1,...,d} and some q € Qg) we define the weights as

Wy = { 1 if max; keqizk ||si — skl < u u>0.

0 otherwise

Evaluate statistical and computational efficiency via the
Time Root Relative Efficiency (TRRE) criterion:

\ _ RMSE(dy) . time(dy)
TRRE(Y) = Tse@) X tme@)

—> Values close to 1 indicate good performance of the j-wise likelihood.
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Performance of composite j-wise likelihoods (2)

s=1.00 s=1.50 s=1.95
j=2 04/06/05/04 05/03/04/03 04/02/04/03
j=3 09/04/12/08 10/03/09/06 05/03/09/06
j=4 21/15/21/10 12/12/13/08 07/17/14/10
j=5 10/04/07/04 09/02/06/05 14/25/11/08
j=10 15/19/10/12 18/26/19/14 16/26/10/10

Table: Time root relative efficiency (TRRE) of §;/7//1;/ B2 when r = 3.0.

Time (min)
0 063 126 189 252 3.14

Time (min)
0 064 128 193 257 3.21

Time (min)

=45

0 058 115 173 231 2.88

Figure: Average maximisation time (in mins) for the j-wise composite likelihood
function. Smoothness values s = 1,1.5 and 1.95 are represented by solid, dashed and

dotted lines.

=2 =3 =4 =5 =10 j=d

=2 =3 =4 j=5 =10 j=d

=2 =3 =4 =5 =10 j=d
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Aggregating data
Main idea borrowed from Symbolic Data Analysis

» Summarise a complex & very large dataset in a compact manner.

S =n(Xun) : [X]N > S such that xi.y — 7(x1:n)

» Collapse over data not needed in detail for analysis.

A likelihood-based approach: (Beranger, Lin & Sisson, 2018)
L(510, 6) x/g(S\x.o)L(x 0)dx

where o
» [(x|0) — standard, classical data likelihood
» g(S|x, @) — probability of obtaining S given classical data x

» [(5]0) — new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model L(x|0), when the data are
viewed only through symbols S as summaries.
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Specific case: Random histograms

Underlying data X;,... Xy € R? ~ g(x|0) collected into random counts

histogram, with fixed blns Bi,...,BsB.

Aggregation:
S = n(Xon) RN 8 =10, NPE B such that
o %0 o € B 557 o € Bo)).

1 if s, observations in bin b; for each b=1,...,

etk ={ 5 o
The symbolic likelihood is then (multinomial):

L(5|0): / (S|x) ngk\()dxxn(/ )

= generalises univariate result of McLachlan & Jones (1988). v/

B
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Specific case: Random histograms

Can recover classical likelihood as B — oo
B sy
Jim L(5]0) oc lim_ E UBb g(z|9)dz] = L(Xi,...,X:|0)

—> recover classical analysis as we approach classical data. v/

s

B=5 B=10

2 0 2 4 & 8

4 2 0 2

v

4 2 o0 2 4 5 8 4 2 0 2 4 & 8

Count Gounts Counts

o & 12 180 2s0 Lot o 3 60 s 1o Lt 010 20 % 40 Loc

B=15 B=25 Classic

4 2 0 2 4

Loc2
4 2 0 2 4 6 8

Counts Counts

Consistency: Can show that with a sufficient number of histogram bins can

perform analysis arbitrarily close to analysis with full dataset.
22/32



Composite symbolic likelihoods

Limitations:

e Multivariate histograms become inefficient as d gets large — number of
bins to cover d dimensions accurately gets large fast.

e Calculating j'B/ 2(z|0)dz: has 2¢ components — viable for low d.

=—> One option: Composite likelihoods.

Consider j = 2, i.e. pairwise composite likelihood, we have

LE(s10) o [TTT L(Ss10)

ij>i

where Sj; is the bivariate marginal histogram for dimensions (i, ;) and

Sb
u&m«H(ﬁanbmmm).
b b
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Composite symbolic likelihoods

From L(S|0) we have (for a single histogram):

0 is asymptotically consistent and distributed as

VN ((L()) — N (0, 1(0)Y)
when
o N — 0
e Number of bins — oo and volume of each bin — 0
(because then L(S]0) — L(x|0))

But when the bins (number and volume) are fixed then
VN ((7 - ()) SN (??(()f bins), 72(6, Bins)*).

» Currently working on non-asymptotic (in bins) distribution of MLE
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Composite symbolic likelihoods

/ From L(Sjg,_(5|€) we have (for a single histogram): \

é(sng is asymptotically consistent and distributed as

VN (9{;‘& . H) — N (0, G(6) )

when
o N —
e Number of bins — oo and volume of each bin — 0
K (because then L(SjéL($|0) — L(éZ(x|0)) /

But when the bins (number and volume) are fixed then, as before
VN ((7% . 0) SN (??(0. bins), 72(6, B,'ns)*).

» Similarly work in progress.

25/32



Simulated spatial extremes

(Mean) Pairwise symbolic composite likelihood estimates ((7(52C>L):

» Consider NV = 1000 observations at K = 15 spatial locations and T =1
random histogram

» Spatial dependence of Smith model is 011 = 300, 012 = 150 and 02 = 200

B o11 o012 o2

2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2) )
3 206.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9)
5 208.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4)
10 209.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9)
15 2095 ( 18.7) 149.8 ( 11.6) 199.8 ( 12.1)
25 200.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9)

Table: Mean (and standard errors) of the symbolic composite MLE é(S2C)L and composite MLE é(CZL) (Classic) from 1000 replications

of the Gaussian max-stable process model, for B X B histograms for varying values of B.

» As "bins — o0” performance approaches classical composite likelihood
(also estimated the marginal parameters).

» “Acceptable’ results for B = 10
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Simulated spatial extremes

(Mean) Time comparisons for increasing N

» Consider B = 25 bins, K = 10, 100 spatial locations and 7 = 1 random
histogram. Repetitions = 10

N K =10 K =100
te ts thistpR  thistR | te ts thistDR thistR
1000 719 225 0.8 0.1 - 22380 78.8 12.0
5000 291.8 19.0 0.8 0.3 - 2650.2 81.7 30.9
10000 591.7 238 0.9 0.5 - 2356.6 85.8 54.1
50000 2626.8 24.2 1.7 21 - 23006 131.6 237.0
100000 5610.7 25.4 2.4 4.2 - 2766.9 188.2 461.8
500000 | 31083.1 23.2 7.5 206 | — 31115 627.1 22435
Ta ble: Mean computation times (seconds) for different components involved in computing 95:22 and égsz

» Classical composite likelihood rapidly not feasible as spatial dimensions
increases (K = 20)

» Symbolic approach much more efficient
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Modelling Australian maximum temperature

» 105 spatial locations with temperature observation, over time
» Want to fit spatial model to temperature extremes.

» Lots of data:

Can't fit using L(X|0) or LY} (X|6)

Can form 105-dimensional histogram(!)

L(S5]0) is completely infeasible

Solution 105x104/2 bivariate histograms
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Modelling Australian maximum temperatures (2)

The data:

e Historical observations (1850 — 2006)

e Simulated observations (2006 — 2100) from CSIRO Mk3.6 model with 2
scenarios: RCP4.5 and RCP8.5

e 90 days across summer months (DJF)

e 15-day blocks (6 obs per year)

e 1, and o modelled as functions of space

B ] on o1 on 5
Historical Data

20 | 164.2 (2.89) -29.3 (0.30) 74.3 (4.69) -0.264 (0.049)

25 | 162.4 (2.17) -29.9 (0.33) 75.3 (2.84) -0.264 (0.049)

30 | 161.6 (2.01) -32.3(0.29) 74.4 (2.34) -0.264 (0.050)

RCP4.5 Data

20 | 163.5(5.95) -41.1(0.73) 77.6 (2.45) -0.249 (0.076)

25 | 150.3 (3.49) -33.1(0.65) 70.7 (1.70) -0.250 (0.073)

30 | 150.2 (1.50) -31.6 (0.24) 70.7 (1.54) -0.250 (0.069)

RCP8.5 Data

20 | 128.0 (6.30) -19.6 (1.29) 66.6 (3.32) -0.231 (0.059)

25 | 136.0 (3.95) -15.1(0.93) 59.4 (3.17) -0.234 (0.060)

30 | 129.9 (4.01) -13.6 (0.83) 56.4 (2.94) -0.233 (0.055)

Table: Means and standard errors of the composite MLEs for the Smith model.
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Modelling Australian maximum temperatures (3)

RCP4.5 95 year return level | B = 30

: N

125 130 135 140 145
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Summary

2 solutions to fit max-stable models in high-dimensions

Solution #1:
» Time of occurrences should be recorded (mix CL and ST likelihoods);
» (Crude) Approximations of cdfs are essential;

» Application to 90-dim temperature data from Inner Melbourne region.

Solution #2:
» Aggregating data into histograms;
» Composite likelihood on histogram likelihood;

» Effect of number of histograms and allocation of micro-data data between
them;

» Comparing bivariate SCL and trivariate SCL;
» Application to 105-dim Australian temperature data.
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Relevent Manuscripts:
P> Beranger B., A. G. Stephenson & S. A. Sisson (2021). High-dimensional inference using the extremal skew-t process

Extremes, In press.

> Whitaker T., B. Beranger & S. A. Sisson (2021). Composite likelihood functions for hist lued random variables.
Stat. Comput., In press.
Contact:
B.Beranger@unsw.edu.au
www.borisberanger.com
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