Logistic Regression Models for Aggregated Data

Boris Beranger, Tom Whitaker, Scott Sisson,

IFCS ,23 July 2022

Big data \longrightarrow small (symbolic) data

General statistical questions:

• How to summarise a complex & very large dataset in a compact manner while retaining maximal relevant information in original dataset?

• How to do statistical analysis using symbolic data?

Useful for: Data storage, computational efficiency, data privatisation, data with non-standard form

In this talk

- Large datasets are aggregated into histograms.
- Use these summaries in order to fit a logistic regression at the underlying data level.

A possible approach to modelling aggregated data

Logistic regression using aggregates

Conclusion

Define $S = \pi(X_{1:N}) : [\mathcal{X}]^N \to S$ such that $x_{1:N} \mapsto \pi(x_{1:N})$ then,

$$L(S| heta) \propto \int_{X} g(S|x,\phi) L(x| heta) dx$$

where

- $L(x|\theta)$ standard, classical data likelihood
- $g(S|x, \phi)$ explains mapping to S given classical data x
- $L(S|\theta)$ new "symbolic" likelihood for parameters of classical model

Gist

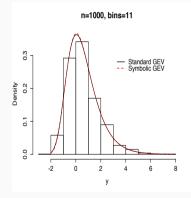
Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model $L(x|\theta)$

- $g(S|x,\phi) = g(S|\phi) \Rightarrow L(S|\theta) = g(S|\phi)$
- Directly modelling symbol = existing likelihood approach (Le Rademacher & Billard, 2011) \checkmark

Modelling a histogram with random counts

 $\underline{\text{Aggregation:}} \ S = \pi(X_{1:N}) : \mathbb{R}^{d \times N} \to S = \{0, \dots, N\}^{B^1 \times \dots \times B^d} \text{ such that} \\ x_{1:N} \mapsto \left(\sum_{i=1}^n \mathbb{I}\{x_i \in \mathcal{B}_1\}, \dots, \sum_{i=1}^n \mathbb{I}\{x_i \in \mathcal{B}_B\}\right)$



- Assume some fixed bins $\mathcal{B}_1, \dots, \mathcal{B}_B$ and let $s = (s_1, \dots, s_B)^\top, \sum_b s_b = n$
- If the X_i are *iid* then likelihood is multinomial:

$$L(s| heta) \propto rac{n!}{s_1! \dots s_B!} \prod_{b=1}^B p_b(heta)^{s_b}$$

where $p_b(\theta) \propto \int_{\mathcal{B}_b} f(z|\theta) dz$ under the model. \checkmark

• More complicated if data are not *iid* (Zhang, Beranger & Sisson, 2020)

Modelling a histogram with random counts

• Can recover classical likelihood as $B \to \infty$

$$\lim_{B\to\infty} L(S|\theta) \propto \lim_{B\to\infty} \frac{n!}{s_1!\dots s_B!} \prod_{b=1}^B \left[\int_{D_b} f(z|\theta) dz \right]^{s_b} = L(X_1,\dots,X_n|\theta)$$

So recover classical analysis as we approach classical data. \checkmark

- Consistency: Can show that with a sufficient number of histogram bins can perform analysis arbitrarily close to analysis with full dataset.
- Computationally scalable: Working with counts not computationally expensive latent data.
- Can consider histogram with random bins

A possible approach to modelling aggregated data

Logistic regression using aggregates

Conclusion

Classification - classical data

- $Y \in \Omega = \{1, \dots, K\}$ (response), $X \in \mathbb{R}^D$ (explanatory)
- Multinomial Logistic Regression: for realisations $\mathbf{x} \in \mathbb{R}^{D \times N}$, $y \in \Omega^N$, parameters $\boldsymbol{\beta} \in \mathbb{R}^{(D+1) \times K}$, the likelihood is given by

$$\mathcal{L}_{\mathrm{M}}(\mathbf{x}, y; \boldsymbol{\beta}) = \prod_{n=1}^{N} \prod_{k \in \Omega} \mathcal{P}_{\mathrm{M}}(Y = k | X = x_n)^{\mathbb{1}\{y_n = k\}},$$

where

$$P_{\mathrm{M}}(Y=k|X) = rac{e^{eta_{k0}+eta_k^ op X}}{1+\sum_{j\in\Omega\setminus\{K\}}e^{eta_{j0}+eta_j^ op X}}.$$

- Other model: One-vs-rest
- Prediction: $Y_n^{\text{Pred}} = \arg \max_{k \in \Omega} P_{\text{Model}}(Y = k | X = X_n), \forall n$
- Prediction accuracy: $PA^{\text{Model}} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\{Y_n^{\text{Pred}} = Y_n\}$

Classification - aggregated data

- Let $\mathbf{X}^{(k)} = (X_n | Y_n = k, n = 1, \dots, N) \in \mathrm{I\!R}^{D \times N_k}$
- If $N_k = \sum_{n=1}^N \mathbb{1}\{Y_n = k\}$ is huge then $\mathbf{X}^{(k)}$ can be aggregated
- Histogram-valued symbol leads to likelihood

$$L_{ ext{SM}}(\mathbf{s};eta) \propto \prod_{k\in\Omega} \prod_{b_k=\mathbf{1}_k}^{\mathbf{B}_k} \left(\int_{oldsymbol{\gamma}_{b_k}} P_{ ext{M}}(Y=k|X=x) \mathsf{d}x
ight)^{s_{b_k}}$$

- Statistical improvement: mixture symbolic and classical contributions
- Computational improvements: Composite Likelihood (based on Whitaker, Beranger & Sisson, 2020) but requires some adjustment.

Composite symbolic likelihood

- Assume the interested is in a subset of size j of the K dimensions.
- Let bⁱ be the subset of b defining the coordinates of a *j*-dimensional histogram bin and let Bⁱ = (B^{i₁},..., B^{i_j}) be the vector of the number of marginal bins.
- The symbolic likelihood function associated with the vector of counts $\mathbf{s}_j^i = (s_{1^i}^i, \dots, s_{B^i}^i)$ of length $B^{i_1} \times \dots \times B^{i_j}$ is

$$\mathcal{L}(\mathbf{s}_{j}^{\mathbf{i}};\theta) = \frac{N!}{s_{\mathbf{1}^{\mathbf{i}}}^{\mathbf{i}}!\cdots s_{\mathbf{B}^{\mathbf{i}}}^{\mathbf{i}}!} \prod_{\mathbf{b}^{\mathbf{i}}=\mathbf{1}^{\mathbf{i}}}^{\mathbf{B}^{\mathbf{i}}} P_{\mathbf{b}^{\mathbf{i}}}(\theta)^{s_{\mathbf{b}^{\mathbf{i}}}^{\mathbf{i}}},$$

where $P_{\mathsf{b}^{i}}(\theta) = \int_{\Upsilon_{b_{i_{1}}}^{i_{1}}} \dots \int_{\Upsilon_{b_{i_{j}}}^{i_{j}}} g_{X}(x;\theta) dx$ and g_{X} is a j-dim density.

• The symbolic j-wise composite likelihood function (SCL^(j)) is given by

$$L_{SCL}^{(j)}(\mathbf{s}_j;\theta) = \prod_{t=1}^{T} \prod_{\mathbf{i}} L(\mathbf{s}_{jt}^{\mathbf{i}};\theta)$$

Classification - Example

- Use a Supersymmetric (SUSY) benchmark dataset which consists of:
 - Binary response (*K* = 2): signal process (which produces supersymmetric particles) vs background process
 - N = 5 million observations
 - D = 18 features (8 kinematic properties, 10 functions)
- Comparison with optimal sub-sampling method (Wang et al., 2018 JASA)
- Training data: 4500 000 obs.
- Test data: 500 000 obs.
- We consider the following:
 - Marginal composite likelihood
 - Histogram with random counts $L_{\rm SO}^{(1)}$

				Bins			
Likelihood	6	8	10	12	15	20	25
$L_{\rm SO}^{(1)}$	74.4	73.5	75.8	77.8	77.4	78.0	78.0
	(13.3)	(12.6)	(11.5)	(13.9)	(16.8)	(18.0)	(21.4)

Table 1: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

- Wang et al. (2018) obtain a prediction accuracy of 78.2 with a computation time of 86.1 seconds.
- Simulation study: as good or better prediction accuracy, shorter computation time
- Sub-sampling will produce better MSE of the regression coefficients.

A possible approach to modelling aggregated data

Logistic regression using aggregates

Conclusion

Summary

Based on a new approach to SDA:

- Aims at fitting underlying (classical) model
- Views latent (classical) data through symbols
- Logistic regression for large datasets as accurate as sub-sampling method but faster

Future work:

- Properties of symbolic based estimators (Prosha Rahman's PhD thesis)
- More general symbols
- Characterise impact of using symbols on accuracy
 - Trade-off of accuracy vs computation
- Design of symbols for best performance
 - Histogram setting: How many bins? Bin locations?

THANK YOU

Manuscripts:

New models for symbolic data. Beranger, Lin & Sisson.

Logistic regression models using aggregated data. Whitaker, Beranger & Sisson (2021). *JCGS*, **30**(4), pp.1049-1067

Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger & Sisson (2020). Stats & Computing, **30**, pp.1459-1477.

Contact:

B.Beranger@unsw.edu.au

Swww.borisberanger.com