
Logistic Regression Models for Aggregated Data

Boris Beranger, Tom Whitaker, Scott Sisson,

IFCS ,23 July 2022

1/15



Motivation

Big data −→ small (symbolic) data

General statistical questions:

• How to summarise a complex & very large dataset in a compact manner while retaining

maximal relevant information in original dataset?

• How to do statistical analysis using symbolic data?

Useful for: Data storage, computational efficiency, data privatisation, data with non-standard

form

In this talk

• Large datasets are aggregated into histograms.

• Use these summaries in order to fit a logistic regression at the underlying data level.
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A possible approach to modelling aggregated data

Logistic regression using aggregates

Conclusion
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One possible approach to modelling aggregated data (Beranger, Lin & Sisson, Submitted)

Define S = π(X1:N) : [X ]N → S such that x1:N 7→ π(x1:N) then,

L(S |θ) ∝
∫
x

g(S |x , φ)L(x |θ)dx

where

• L(x |θ) – standard, classical data likelihood

• g(S |x , φ) – explains mapping to S given classical data x

• L(S |θ) – new “symbolic” likelihood for parameters of classical model

Gist

Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model L(x |θ)

• g(S |x , φ) = g(S |φ) ⇒ L(S |θ) = g(S |φ)

• Directly modelling symbol = existing likelihood approach (Le Rademacher & Billard, 2011) X
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Modelling a histogram with random counts

Aggregation: S = π(X1:N) : Rd×N → S = {0, . . . ,N}B1×···×Bd

such that

x1:N 7→
(∑n

i=1 I{xi ∈ B1}, . . . ,
∑n

i=1 I{xi ∈ BB}
)

n=1000, bins=11
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• Assume some fixed bins

B1, . . . ,BB and let

s = (s1, . . . , sB)>,
∑

b sb = n

• If the Xi are iid then likelihood is

multinomial:

L(s|θ) ∝ n!

s1! . . . sB !

B∏
b=1

pb(θ)sb

where pb(θ) ∝
∫
Bb

f (z |θ)dz under

the model. X

• More complicated if data are not iid (Zhang, Beranger & Sisson, 2020)
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Modelling a histogram with random counts

• Can recover classical likelihood as B →∞

lim
B→∞

L(S |θ) ∝ lim
B→∞

n!

s1! . . . sB !

B∏
b=1

[∫
Db

f (z |θ)dz

]sb
= L(X1, . . . ,Xn|θ)

So recover classical analysis as we approach classical data. X

• Consistency: Can show that with a sufficient number of histogram bins can perform

analysis arbitrarily close to analysis with full dataset.

• Computationally scalable: Working with counts not computationally expensive latent data.

• Can consider histogram with random bins
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A possible approach to modelling aggregated data

Logistic regression using aggregates

Conclusion
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Classification - classical data

• Y ∈ Ω = {1, . . . ,K} (response), X ∈ IRD (explanatory)

• Multinomial Logistic Regression: for realisations x ∈ IRD×N , y ∈ ΩN , parameters

βββ ∈ IR(D+1)×K , the likelihood is given by

LM(x, y ;βββ) =
N∏

n=1

∏
k∈Ω

PM(Y = k|X = xn)1{yn=k},

where

PM(Y = k |X ) =
eβk0+β>

k X

1 +
∑

j∈Ω\{K} e
βj0+β>

j X
.

• Other model: One-vs-rest

• Prediction: Y Pred
n = arg maxk∈Ω PModel(Y = k |X = Xn), ∀n

• Prediction accuracy: PAModel = 1
N

∑N
n=1 1{Y Pred

n = Yn}
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Classification - aggregated data

• Let X(k) = (Xn|Yn = k , n = 1, . . . ,N) ∈ IRD×Nk

• If Nk =
∑N

n=1 1{Yn = k} is huge then X(k) can be aggregated

• Histogram-valued symbol leads to likelihood

LSM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
ΥΥΥbk

PM(Y = k|X = x)dx

)sbk

• Statistical improvement: mixture symbolic and classical contributions

• Computational improvements: Composite Likelihood (based on Whitaker, Beranger & Sisson,

2020) but requires some adjustment.
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Composite symbolic likelihood

• Assume the interested is in a subset of size j of the K dimensions.

• Let bi be the subset of b defining the coordinates of a j−dimensional histogram bin and

let Bi = (B i1 , . . . ,B ij ) be the vector of the number of marginal bins.

• The symbolic likelihood function associated with the vector of counts si
j = (s i

1i , . . . , s
i
Bi ) of

length B i1 × · · · × B ij is

L(si
j ; θ) =

N!

s i
1i ! · · · s i

Bi !

Bi∏
bi=1i

Pbi (θ)s
i
bi ,

where Pbi (θ) =
∫

Υ
i1
bi1

. . .
∫

Υ
ij
bij

gX (x ; θ)dx and gX is a j−dim density.

• The symbolic j−wise composite likelihood function (SCL(j)) is given by

L
(j)
SCL(sj ; θ) =

T∏
t=1

∏
i

L(si
jt ; θ)
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Classification - Example

• Use a Supersymmetric (SUSY) benchmark dataset which consists of:

• Binary response (K = 2): signal process (which produces supersymmetric particles) vs

background process

• N = 5 million observations

• D = 18 features (8 kinematic properties, 10 functions)

• Comparison with optimal sub-sampling method (Wang et al., 2018 JASA)

• Training data: 4 500 000 obs.

• Test data: 500 000 obs.

• We consider the following:

• Marginal composite likelihood

• Histogram with random counts L
(1)
SO
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Classification - Example

Bins

Likelihood 6 8 10 12 15 20 25

L
(1)
SO 74.4 73.5 75.8 77.8 77.4 78.0 78.0

(13.3) (12.6) (11.5) (13.9) (16.8) (18.0) (21.4)

Table 1: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

• Wang et al. (2018) obtain a prediction accuracy of 78.2 with a computation time of 86.1

seconds.

• Simulation study: as good or better prediction accuracy, shorter computation time

• Sub-sampling will produce better MSE of the regression coefficients.
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Summary

Based on a new approach to SDA:

• Aims at fitting underlying (classical) model

• Views latent (classical) data through symbols

• Logistic regression for large datasets as accurate as sub-sampling method but faster

Future work:

• Properties of symbolic based estimators (Prosha Rahman’s PhD thesis)

• More general symbols

• Characterise impact of using symbols on accuracy

• Trade-off of accuracy vs computation

• Design of symbols for best performance

• Histogram setting: How many bins? Bin locations?
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THANK YOU

| Manuscripts:

p New models for symbolic data. Beranger, Lin & Sisson.

p Logistic regression models using aggregated data. Whitaker, Beranger & Sisson (2021). JCGS, 30(4),

pp.1049-1067

p Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger & Sisson (2020).

Stats & Computing, 30, pp.1459-1477.
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