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Big data — small (symbolic) data

General statistical questions:

e How to summarise a complex & very large dataset in a compact manner while retaining
maximal relevant information in original dataset?

e How to do statistical analysis using symbolic data?

Useful for: Data storage, computational efficiency, data privatisation, data with non-standard
form

In this talk
e Large datasets are aggregated into histograms.
e Use these summaries in order to fit a logistic regression at the underlying data level.
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A possible approach to modelling aggregated data
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One pOSSible approach to modelling aggregated data (Beranger, Lin & Sisson, Submitted)

Define S = m(Xy.n) : [X]V — S such that xq.y > 7(x1.n) then,

L(5]6) o /g(5|x,¢)L(x|e)dx
where

e [(x|0) — standard, classical data likelihood
e g(S|x, ¢) — explains mapping to S given classical data x
o [(5]0) — new “symbolic” likelihood for parameters of classical model
Gist
Fitting the standard classical model, when the data are viewed only through symbols S

Example: No generative model L(x|6)

* g(SIx,¢) = g(S[#) = L(S]0) = &(Sl¢)
e Directly modelling symbol = existing likelihood approach v
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Modelling a histogram with random counts

Aggregation: S = 7(Xy.n) : RN = S =1{0,..., N}BIX'“XBd such that
X1:N (27:1 {x € B}, ..., Z:",:l I{x; € BB})
n=1000, bins=11 e Assume some fixed bins
Bi,...,Bg and let
s=(S1,---,58) > pSp=n
— Standard GEV .. 0 o .
=~ Symbolic GEV e If the X; are iid then likelihood is

multinomial:

L(s]0) o P ,Hpb

202z 488 where py(0) o< [, f(2|0)dz under
the model. v
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e More complicated if data are not iid
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Modelling a histogram with random counts

Can recover classical likelihood as B — oo

Jim L(S]6) oc lim P H [/ (z]6)d. r = L(X1,...,Xn|0)

B—oo 51!

So recover classical analysis as we approach classical data. v/

e Consistency: Can show that with a sufficient number of histogram bins can perform
analysis arbitrarily close to analysis with full dataset.

Computationally scalable: Working with counts not computationally expensive latent data.

Can consider histogram with random bins
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Logistic regression using aggregates
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Classification - classical data

e YeQ={1,...,K} (response), X € IRP (explanatory)

o Multinomial Logistic Regression: for realisations x € R”*V, y € QN parameters
B € RPT*K  the likelihood is given by

Lu(x,y: B) = H [T Pu(Y = kX = x)' =3,

n=1keQ

where -
eProtBe X

Pu(Y = k|X) = —
1 _|_ ZjeQ\{K} e/8j0+ﬁj X

e Other model: One-vs-rest
e Prediction: Y4 = arg max,cq Prodel(Y = kX = X,), Vn
e Prediction accuracy: PAMedel — L Zn LL{YPred = v}
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Classification - aggregated data

o Let XK = (X,|Y,=k,n=1,...,N) e RP*M
If Ny = 25:1 1{Y, = k} is huge then X(¥) can be aggregated

e Histogram-valued symbol leads to likelihood

Lsu(s: B) o [ | ﬁ (/’rb

keQ be=1y

Sbk
PM(Y = k‘X = X)dX>

k

Statistical improvement: mixture symbolic and classical contributions

Computational improvements: Composite Likelihood (based on
) but requires some adjustment.
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Composite symbolic likelihood

e Assume the interested is in a subset of size j of the K dimensions.

e Let b be the subset of b defining the coordinates of a j—dimensional histogram bin and
let B' = (B1,. .., B'') be the vector of the number of marginal bins.

e The symbolic likelihood function associated with the vector of counts sji- = (Syis- .-, 5gi) of
length Bt x --- x Bl is

where Pi(0) = fTbl "'f“r"f gx(x; 0)dx and gx is a j—dim density.
i b"j

e The is given by
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Classification - Example

e Use a Supersymmetric (SUSY) benchmark dataset which consists of:
e Binary response (K = 2): signal process (which produces supersymmetric particles) vs
background process
e N =5 million observations
e D = 18 features (8 kinematic properties, 10 functions)

Comparison with optimal sub-sampling method ( )
Training data: 4500000 obs.
Test data: 500000 obs.

We consider the following:

e Marginal composite likelihood
e Histogram with random counts ng)
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Classification - Example

Bins
Likelihood 6 8 10 12 15 20 25
1% 74.4 735 75.8 77.8 77.4 78.0 78.0

(133) (126) (11.5) (13.9) (16.8) (18.0) (21.4)

Table 1: Prediction accuracies percentage (computing time in seconds) on the Supersymmetric dataset using histograms with B bins per margins.

° obtain a prediction accuracy of 78.2 with a computation time of 86.1
seconds.

e Simulation study: as good or better prediction accuracy, shorter computation time

e Sub-sampling will produce better MSE of the regression coefficients.
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Conclusion
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Based on a new approach to SDA:
e Aims at fitting underlying (classical) model
e Views latent (classical) data through symbols

e Logistic regression for large datasets as accurate as sub-sampling method but faster

Future work:
e Properties of symbolic based estimators (Prosha Rahman's PhD thesis)
e More general symbols
e Characterise impact of using symbols on accuracy
e Trade-off of accuracy vs computation
e Design of symbols for best performance

e Histogram setting: How many bins? Bin locations?
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a New models for symbolic data. Beranger, Lin & Sisson.

E Logistic regression models using aggregated data. Whitaker, Beranger & Sisson (2021). JCGS, 30(4),
pp.1049-1067

ﬁ Composite likelihood methods for histogram-valued random variables. Whitaker, Beranger & Sisson (2020).
Stats & Computing, 30, pp.1459-1477.
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