

Estimating Equations for data summaries

Tom Whitaker, Boris Beranger, Scott A. Sisson,

UNSW & ACEMS

New Perspectives in Data Science IHP, 6th March, 2020

SDA Seminal contributor Citations: 9282 H-index: 41

1987: Edwin's first SDA paper and ... I was born!

- 2016: I started research in SDA
- 2017: Edwin and I met at the SDA workshop in Ljubljana

SDA Seminal contributor Citations: 9282 H-index: 41

1987: Edwin's first SDA paper and ... I was born!

2016: I started research in SDA

2017: Edwin and I met at the SDA workshop in Ljubljana

SDA Seminal contributor Citations: 9282 H-index: 41

1987: Edwin's first SDA paper and ... I was born!

2016: I started research in SDA

2017: Edwin and I met at the SDA workshop in Ljubljana

SDA Seminal contributor Citations: 9282 H-index: 41

- 1987: Edwin's first SDA paper and ... I was born!
- 2016: I started research in SDA
- 2017: Edwin and I met at the SDA workshop in Ljubljana

SDA Seminal contributor Citations: 9282 H-index: 41

- 1987: Edwin's first SDA paper and ... I was born!
- 2016: I started research in SDA
- 2017: Edwin and I met at the SDA workshop in Ljubljana

SDA Seminal contributor Citations: 9282 H-index: 41

- 1987: Edwin's first SDA paper and ... I was born!
- 2016: I started research in SDA
- 2017: Edwin and I met at the SDA workshop in Ljubljana
- 2020: HAPPY BIRTHDAY EDWIN!

Talk Outline

- Background Information
- Estimating Equations for symbolic data
- . Examples
 - Discussion

Background Information (1)

▶ Let $X = (X_{[1]}, ..., X_{[D]}) \in \mathcal{D}_X \subset \mathbb{R}^D$ with d.f. F_X (unknown).

Let X = (X₁,...,X_N) be the collection of N i.i.d. replicates of X with realisation given by x = (x₁,...,x_N)

Without any parametric assumption about F_X :

Make statistical inference on $\theta \in \mathcal{D}_{\theta} \subset \mathbb{R}^{M}$ using $R \geq M$ functionally independent estimating equations (EE):

 $g(X,\theta) = (g_1(X,\theta),\ldots,g_R(X,\theta))^{\top},$

with the condition

 $\mathbb{E}_{F_X}[g_r(X,\hat{\theta})] = 0$, for all $r = 1, \ldots, R$.

Background Information (2)

• No assumption on $F_X \Rightarrow$ Empirical alternative

The **empirical likelihood (EL)** associated with the observed sample **x** is

$$L(F_X; \mathbf{x}) = \prod_{n=1}^N \mathrm{d} F_X(x_n) = \prod_{n=1}^N P(X = x_n).$$

 F_X can be seen as a discrete distribution on $\{x_1, \ldots, x_N\}$ with probability vector $p = (p_1, \ldots, p_N)$ defined such that:

(C1):
$$p_n = P(X = x_n) > 0, n = 1, ..., N.$$

(C2): $\sum_{n=1}^{N} p_n = 1$

If there are no other conditions on x other than (C1) and (C2) then

$$\hat{p}_n = \operatorname*{arg\,max}_{p_n \mid C1, C2} \prod_{n=1}^N p_n = \frac{1}{N},$$

and the estimating equation becomes:

$$\frac{1}{N}\sum_{n=1}^{N}g_r(x_n,\hat{\theta})=0, \text{ for all } r=1,\ldots,R.$$

Background Information (3)

Example:

Assume we are interested in estimating the mean and variance, i.e. for M = 2:

$$\theta = (\mu, \sigma^2) = (\mathbb{E}(X), \mathbb{V}(X)).$$

A natural choice of estimating function with R = 2 is then

$$g(X,\theta) = \left(X - \mu, (X - \mu)^2 - \sigma^2\right),$$

for which the estimating equations give

$$\begin{cases} \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu}) = 0 \\ \frac{1}{N} \sum_{n=1}^{N} ((x_n - \hat{\mu})^2 - \hat{\sigma}^2) = 0 \end{cases}$$

$$\Leftrightarrow \left\{ \begin{array}{l} \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \\ \\ \hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \end{array} \right.$$

Symbolic Data

For a <u>class</u> c = 1, ..., C, let $\mathbf{X}^{(c)} = \{X_1^{(c)}, ..., X_{n_c}^{(c)}\}$ denote the *c*-th subset of \mathbf{X} of size n_c s.t.

$$\begin{cases} \bigcup_{c=1}^{C} \boldsymbol{X}^{(c)} = \boldsymbol{X} \\ \sum_{c=1}^{C} n_{c} = N \end{cases}$$

The *Symbolic object* $S_c \in \mathcal{D}_{S_c}$ is a summary of the information contained in $\mathbf{X}^{(c)}$, obtained through an aggregation function $\pi(\cdot)$ which may contain some deterministic elements ϑ

For observations $\mathbf{x}^{(c)}$, the information is summarised in $\mathbf{s}_c = \{\mathbf{n}_c, \Upsilon_c, \alpha_c\}$, where $\Upsilon_c = \mathcal{D}(\mathbf{X}^{(c)})$ and α_c contains the summary statistics specific to $\pi(\cdot)$.

Estimating Equations for Symbolic Data (1)

- Let $\phi_c := f_{X|S_c=s_c}$ denote the density of X given a summary s_c .
- Let $\phi := f_{X|S=s}$ denote the density of X given the set of all summaries s.
- These densities are linked through

$$\phi_c(x) = \frac{\mathbb{1}(x \in s_c)\phi(x)}{\mathbb{P}(s_c)},$$

where the indicator restricts to the *c*-th symbol and the denominator corresponds its probability of occurrence $\mathbb{P}(s_c) = \int \phi(y) \mathbb{1}\{y \in s_c\} dy$.

• **Example:** If classes/symbols are independent then we can take $\overline{\mathbb{P}(s_c)} = \frac{n_c}{N}$ such that $\sum_{c=1}^{C} \mathbb{P}(s_c) = 1$ which yields

$$\phi(x) = \sum_{c=1}^{C} \frac{n_c}{N} \phi_c(x).$$

Estimating Equations for Symbolic Data (2)

We define the estimating equations for symbolic inputs as

$$\mathbb{E}_{F_S}[g'_r(S,\theta,\vartheta)] = 0, \text{ for all } r = 1,\ldots,R$$

where g'_r is a transformation of g_r due to the aggregation and F_S is the symbolic distribution function.

1. Need to define an empirical alternative for F_S

2. Need to derive g'_r (from g_r)

Estimating Equations for Symbolic Data (3)

The symbolic empirical likelihood associated with the observed symbol s is

$$L(F_S; \boldsymbol{s}) = \prod_{c=1}^{C} \mathbb{P}(S = \boldsymbol{s}_c) = \prod_{c=1}^{C} \prod_{n=1}^{n_c} \mathbb{P}(X = \boldsymbol{x}_n^{(c)}),$$

 F_S can be seen as a discrete distribution on s_1, \ldots, s_C with probabilities p_1, \ldots, p_C , such that:

$$\begin{cases} (C3): p_c = \mathbb{P}(S_c = s_c) > 0, c = 1, \dots, C \\ (C4): \sum_{c=1}^{C} p_c = 1 \end{cases}$$

Each observation $x_n^{(c)}$, $n = 1, ..., n_c$, c = 1, ..., C has probability $q_n^{(c)} = \frac{p_c}{n_c}$, such that $\sum_{c=1}^{C} \sum_{n=1}^{n_c} q_n^{(c)} = 1$. If there are no other conditions on s other than **(C3)** and **(C4)** then

$$\hat{q}_{n}^{(c)} = \operatorname*{arg\,max}_{q_{n}^{(c)}|C3,C4} \prod_{c=1}^{C} \prod_{n=1}^{n_{c}} q_{n}^{(c)} = \frac{1}{N}, \implies \hat{p}_{c} = \frac{n_{c}}{N}$$

and the estimating equation becomes:

$$\sum_{c=1}^{C} \frac{n_c}{N} g'_r(s_c, \hat{\theta}, \vartheta) = 0, \text{ for all } r = 1, \dots, R.$$

Estimating Equations for Symbolic Data (4)

The symbolic estimating equations are obtained by integrating the classical estimating equation over all the data points x from which the symbols s are produced with their corresponding weights, i.e.

 $\mathbb{E}_{F_{S}}[g_{r}'(S,\theta,\vartheta)] = \int_{\mathcal{D}_{Y}^{N}} \mathbb{E}_{F_{X}}[g_{r}(X,\theta)]f_{S|X}(s|x,\vartheta)\phi(x)dx.$

$$\begin{split} \mathbb{E}_{F_{S}}[g_{r}'(S,\theta,\vartheta)] &= \int_{\mathcal{D}_{X}^{N}} \mathbb{1}\left\{\pi\left(\mathbf{x}^{(c)}\right) = \mathbf{s}_{c}; c = 1, \dots, C\right\} \\ &\times \left\{\frac{1}{N}\sum_{n=1}^{N}\sum_{c=1}^{C}\mathbb{1}\left\{x_{n} \in \mathbf{x}^{(c)}\right\}g_{r}(x_{n};\theta)\right\}\phi(\mathbf{x})\mathrm{d}\mathbf{x} \\ &= \frac{1}{N}\sum_{n=1}^{N}\sum_{c=1}^{C}\int_{\mathcal{D}_{X}^{N}}\mathbb{1}\left\{x_{n} \in \mathbf{x}^{(c)}\right\}\mathbb{1}\left\{\pi\left(\mathbf{x}^{(c)}\right) = \mathbf{s}_{c}\right\}g_{r}(x_{n};\theta)\phi(\mathbf{x})\mathrm{d}\mathbf{x} \\ &= \sum_{c=1}^{C}\frac{n_{c}}{N}\int_{\Upsilon_{c}}\phi_{c}(x)g_{r}(x;\theta)\mathrm{d}x, \end{split}$$

And we conclude

$$g_r'(s_c, \theta, \vartheta) = \int_{\Upsilon_c} \phi_c(x) g_r(x, \theta) \mathrm{d}x.$$

Estimating the within-symbol density ϕ_c (1)

Back to the Example: $\theta = (\mu, \sigma^2)$, we can rewrite

$$\mathbb{E}_{F_X}\left[g\left(\boldsymbol{X},\hat{\theta}\right)\right] = \left(\frac{1}{N}\sum_{n=1}^{N}(x_n-\hat{\mu}), \frac{1}{N}\sum_{n=1}^{N}\left((x_n-\hat{\mu})^2-\hat{\sigma}^2\right)\right)$$
$$= \left(\sum_{c=1}^{C}\frac{n_c}{N}(\mu_c-\hat{\mu}), \sum_{c=1}^{C}\frac{n_c}{N}\left((\mu_c-\hat{\mu})^2+\sigma_c^2-\hat{\sigma}^2\right)\right) = 0$$

 \Rightarrow Need $\hat{\mu}_c = \mathbb{E}_{\phi_c}(X)$ and $\hat{\sigma}_b^2 = \mathbb{V}_{\phi_c}(X)$.

$$\begin{array}{ll} \text{For skewness:} & \gamma_{c} = \mathbb{E}_{F_{X^{c}}}[((X^{(c)} - \mu_{b})/\sigma_{b})^{3}] \\ \text{For correlation:} & \rho_{cde} = \mathbb{E}_{F_{X^{c}}}[(X^{(c)}_{[d]} - \mu_{c[d]})(X^{(c)}_{[e]} - \mu_{c[e]})]\sigma^{-2}_{c[d]}\sigma^{-2}_{c[e]} \end{array}$$

We first need to estimate ϕ

Common approach: (Bertrand and Goupil, 2000; Billard and Diday, 2003)

- Assume uniformity within classes: ϕ_c is uniform density;
- **Example:** $\alpha_c = (\alpha_{c,l}, \alpha_{c,u})$ the upper and lower bounds of an interval

•
$$\hat{\mu}_c = \frac{\alpha_{c,l} + \alpha_{c,u}}{2}$$
, $\hat{\sigma}_c^2 = \frac{(\alpha_{c,u} - \alpha_{c,l})^2}{12}$

Estimating the within-symbol density ϕ_c (2)

Our approach: Borrowing information from adjacent symbols

- Attribution of a realisation to a class is random:
 Λ_x ∈ {1,..., C} with d.f. H_x, indicates the list of symbols in which an observation x could have been aggregated in.
- Redefine \(\phi\) (density of X given \(\boldsymbol{S}\)) as

$$\phi(x) = \int_{\mathcal{D}(\Lambda_x)} f_{X|\mathbf{S}=\mathbf{s}'}(x) \mathrm{d}H_x(\lambda) \mathrm{d}\lambda$$

where s' denotes the set of symbols given that the observation x is assumed to be grouped in the λ -th class.

If an observation x can only be associated to a unique symbol s_c then H_x is a Dirac delta function and $\phi(x) = f_{X|S=s'}(x)$.

• The density of an observation given a symbol s_c is given by

$$\phi_c(x) = \frac{\mathbb{1}\{x \in s_c\}\phi(x)}{P_H^{s_c}}, \quad P_H^{s_c} = \int_{\Upsilon_c} \phi(x) \mathrm{d}H_x(c) \mathrm{d}x.$$

ϕ_c for interval-valued data

- ▶ s_c: D-dimensional intervals with $\alpha_c = (\alpha_{c,l}, \alpha_{c,u})$ and $\Upsilon_c = [\alpha_{c,l}, \alpha_{c,u}]$
- If x is in a region where some intervals from the set s overlap, then Λ_x has a discrete outcome λ, a subset of {1,..., C}

$$H_x(\lambda, c) = rac{n_c}{\sum_{a \in \lambda} n_a}, ext{ for all } c \in \lambda.$$

We can derive that:

$$\phi(x) = \sum_{c=1}^{C} \frac{n_c}{N|\Upsilon_c|} \mathbb{1}\{x \in \Upsilon_c\},$$

Split the range of x into a grid of subintervals denoted by v_b with $b = (b_1, \ldots, b_D)$ and $b_d = 1, \ldots, (2C + 1); d = 1, \ldots D$

The normalising term $P_H^{s_c} = m_c(1)$ where

$$\begin{split} m_{c}(f(x)) &= \int_{\Upsilon_{c}} f(x)\phi(x)\mathrm{d}H_{x}(c)\mathrm{d}x\\ &= \frac{1}{N}\sum_{c'=1}^{C}\frac{n_{c'}}{|\Upsilon_{c'}|}\left(\sum_{\boldsymbol{b}}\mathbbm{1}\{\upsilon_{\boldsymbol{b}}\subset\Upsilon_{c'}\}H_{\boldsymbol{b}}(\lambda,c)\int_{\upsilon_{\boldsymbol{b}}}f(y)\mathrm{d}y\right), \end{split}$$

$\phi_{\textit{c}}$ for interval-valued data

The estimates of the mean, variance, skewness and correlation within an interval c are obtained using the density ϕ_c and are given as follows

$$\hat{\mu}_{cd} = \frac{m_c \left(\mathbf{x}_{[d]} \right)}{m_c(1)}, \qquad \qquad \hat{\sigma}_{cd}^2 = \frac{m_c \left(\mathbf{x}_{[d]} \right)}{m_c(1)} - \hat{\mu}_{cd}^2,$$

$$\hat{\gamma}_{cd} = \frac{m_c \left(\mathbf{x}_{[d]} \right)}{m_c(1)\hat{\sigma}_{cd}^3} - \frac{\hat{\mu}_{cd}^3}{\hat{\sigma}_{cd}^3} - 3\frac{\hat{\mu}_{cd}}{\hat{\sigma}_{cd}}, \qquad \hat{\rho}_{cde} = \frac{m_c \left(\mathbf{x}_{[d]} \right)}{m_c(1)\hat{\sigma}_{cd}\hat{\sigma}_{ce}} - \frac{\hat{\mu}_{cd}\hat{\mu}_{ce}}{\hat{\sigma}_{cd}\hat{\sigma}_{ce}},$$
for $d = 1, \dots, D.$

ϕ_{c} for histogram-valued data

- **s**_c: D-dimensional histogram bins with $n_c = \alpha_c = \sum_{n=1}^N \mathbb{1}\{x_n \in \Upsilon_c\}$ and $\Upsilon_c = ((y_{c_1-1}^1, y_{c_1}^1) \times \cdots \times (y_{c_D-1}^D, y_{c_D}^D)).$
- Assume the marginal bin width to be equal and given by $\delta_d = y_{c_d}^d y_{c_d-1}^d \ \forall c_d, d \text{ s.t.}$ the area of each bin is $|\Upsilon_c| = \prod_{d=1}^D \delta_d$.
- Choice of the bin locations Υ_c is arbitrary and other histograms could have arisen by shifting the bin locations by up to half of their width to the left or to the right.
- New bin locations $\Upsilon' = \Upsilon + \boldsymbol{u}$ where $\boldsymbol{u} = (u_1, \dots, u_D)$, $u_d \sim \mathcal{U}\left(-\frac{\delta_d}{2}, \frac{\delta_d}{2}\right)$.
- Λ_x: the bin Υ in which x could have been aggregated to, is now a continuous as the set of outcomes contains all the shifted bins Υ' that will include x.

$$H_{x}(\Upsilon_{c}') = \frac{1}{\prod_{d=1}^{D} \delta_{d}} \mathbb{1}\{x \in \Upsilon_{c}'\}$$

 Assuming that histogram bins can be shifted relates to the ideas of Heitjan and Rubin (1991)

Examples

N = 2000 draws from the <u>Skew-Normal</u> distribution.C min/max intervals

- Classical estimates and 95% CI (Solid black)
- Borrowing/Not borrowing information (Solid grey/Dotted black)
- Billard and Didday (2003) histogram estimator of intervals by partitioning, borrowing (Dotted grey) and not borrowing information (Dashed grey)

Examples

N = 2000 draws from the <u>Skew-Normal</u> distribution.• 1 Histogram with C equal bins

- Classical estimates and 95% CI (Solid black)
- Borrowing/Not borrowing information (Solid grey/Dotted black)

Discussion

- A new non-parametric approach to estimate statistics presented in the general framework of Estimating Equations
- Proposal to borrow information from neighbours to get a sense of the dependence:
 - Borrow lots of information = low dependence
 - Borrow no information = dependence
- Not always necessary: e.g. mushroom dataset analysed in de A Lima Neto et al. (2011)

THANK YOU

Manuscripts:

- Whitaker, Beranger & Sisson (2020). Estimating Equations for data summaries. Available very soon!
- Beranger, Lin & Sisson (2018). New models for symbolic data. https://arxiv.org/pdf/1805.03316.pdf
- Whitaker, Beranger & Sisson (2019). Composite likelihood methods for histogram-valued random variables.

https://arxiv.org/pdf/1908.11548.pdf

Contact:

B.Beranger@unsw.edu.au