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Background Information (1)

I Let X = (X[1], . . . ,X[D]) ∈ DX ⊂ RD with d.f. FX (unknown).

I Let X = (X1, . . . ,XN) be the collection of N i.i.d. replicates of X with
realisation given by x = (x1, . . . , xN)

'

&

$

%

Without any parametric assumption about FX :

Make statistical inference on θ ∈ Dθ ⊂ RM using R ≥ M functionally
independent estimating equations (EE):

g(X , θ) = (g1(X , θ), . . . , gR(X , θ))>,

with the condition

EFX [gr (X , θ̂)] = 0, for all r = 1, . . . ,R.
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Background Information (2)

I No assumption on FX ⇒ Empirical alternative'

&

$

%

The empirical likelihood (EL) associated with the observed sample x is

L(FX ; x) =
∏N

n=1 dFX (xn) =
∏N

n=1 P(X = xn).

FX can be seen as a discrete distribution on {x1, . . . , xN} with probability
vector p = (p1, . . . , pN) defined such that:

(C1): pn = P(X = xn) > 0, n = 1, . . . ,N.
(C2):

∑N
n=1 pn = 1

If there are no other conditions on x other than (C1) and (C2) then

p̂n = arg max
pn|C1,C2

N∏
n=1

pn =
1

N
,

and the estimating equation becomes:

1

N

N∑
n=1

gr (xn, θ̂) = 0, for all r = 1, . . . ,R.
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Background Information (3)

Example:

Assume we are interested in estimating the mean and variance, i.e. for M = 2:

θ = (µ, σ2) = (E(X ),V(X )).

A natural choice of estimating function with R = 2 is then

g(X , θ) =
(
X − µ, (X − µ)2 − σ2

)
,

for which the estimating equations give


1
N

∑N
n=1(xn − µ̂) = 0

1
N

∑N
n=1

(
(xn − µ̂)2 − σ̂2

)
= 0

⇔


µ̂ = 1

N

∑N
n=1 xn

σ̂2 = 1
N

∑N
n=1 (xn − µ̂)2
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Symbolic Data

For a class c = 1, . . . ,C , let X (c) = {X (c)
1 , . . . ,X

(c)
nc } denote the c-th subset of

X of size nc s.t. 
⋃C

c=1 X (c) = X∑C
c=1 nc = N

�
�

�



The Symbolic object Sc ∈ DSc is a summary of the information contained
in X (c), obtained through an aggregation function π(·) which may contain
some deterministic elements ϑ

For observations x (c), the information is summarised in sc = {nc ,Υc , αc}, where
Υc = D(X (c)) and αc contains the summary statistics specific to π(·).
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Estimating Equations for Symbolic Data (1)

I Let φc := fX |Sc=sc denote the density of X given a summary sc .

I Let φ := fX |S=s denote the density of X given the set of all summaries s.

I These densities are linked through

φc(x) =
1(x ∈ sc)φ(x)

P(sc)
,

where the indicator restricts to the c-th symbol and the denominator
corresponds its probability of occurrence P(sc) =

∫
φ(y)1{y ∈ sc}dy .

I Example: If classes/symbols are independent then we can take

P(sc) = nc
N

such that
∑C

c=1 P(sc) = 1 which yields

φ(x) =
C∑

c=1

nc
N
φc(x).
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Estimating Equations for Symbolic Data (2)

�

�

�

�

We define the estimating equations for symbolic inputs as

EFS [g ′r (S , θ, ϑ)] = 0, for all r = 1, . . . ,R

where g ′r is a transformation of gr due to the aggregation and FS is the
symbolic distribution function.

1. Need to define an empirical alternative for FS

2. Need to derive g ′r (from gr )
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Estimating Equations for Symbolic Data (3)

The symbolic empirical likelihood associated with the observed symbol s is

L(FS ; s) =
C∏

c=1

P(S = sc) =
C∏

c=1

nc∏
n=1

P(X = x (c)
n ),

FS can be seen as a discrete distribution on s1, . . . , sC with probabilities
p1, . . . , pC , such that:{

(C3) : pc = P(Sc = sc) > 0, c = 1, . . . ,C

(C4) :
∑C

c=1 pc = 1

Each observation x
(c)
n , n = 1, . . . , nc , c = 1, . . . ,C has probability q

(c)
n = pc

nc
,

such that
∑C

c=1

∑nc
n=1 q

(c)
n = 1.

If there are no other conditions on s other than (C3) and (C4) then

q̂(c)
n = arg max

q
(c)
n |C3,C4

C∏
c=1

nc∏
n=1

q(c)
n =

1

N
, =⇒ p̂c =

nc
N

and the estimating equation becomes:

C∑
c=1

nc
N

g ′r (sc , θ̂, ϑ) = 0, for all r = 1, . . . ,R.
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Estimating Equations for Symbolic Data (4)�

�

�

�

The symbolic estimating equations are obtained by integrating the classical
estimating equation over all the data points x from which the symbols s are
produced with their corresponding weights, i.e.

EFS [g ′r (S , θ, ϑ)] =
∫
DN

X
EFX [gr (X , θ)]fS|X (s|x , ϑ)φ(x)dx .

EFS [g ′r (S , θ, ϑ)] =

∫
DN

X

1
{
π
(
x (c)
)

= sc ; c = 1, . . . ,C
}

×

{
1

N

N∑
n=1

C∑
c=1

1{xn ∈ x (c)}gr (xn; θ)

}
φ(x)dx

=
1

N

N∑
n=1

C∑
c=1

∫
DN

X

1{xn ∈ x (c)}1
{
π
(
x (c)
)

= sc
}
gr (xn; θ)φ(x)dx

=
C∑

c=1

nc
N

∫
Υc

φc(x)gr (x ; θ)dx ,

And we conclude

g ′r (sc , θ, ϑ) =

∫
Υc

φc(x)gr (x , θ)dx .
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Estimating the within-symbol density φc (1)

Back to the Example: θ = (µ, σ2), we can rewrite

EFX

[
g
(
X , θ̂

)]
=

(
1

N

N∑
n=1

(xn − µ̂),
1

N

N∑
n=1

(
(xn − µ̂)2 − σ̂2

))

=

(
C∑

c=1

nc
N

(µc − µ̂),
C∑

c=1

nc
N

(
(µc − µ̂)2 + σ2

c − σ̂2
))

= 0

⇒ Need µ̂c = Eφc (X ) and σ̂2
b = Vφc (X ).

For skewness: γc = EFXc [((X (c) − µb)/σb)3]

For correlation: ρcde = EFXc [(X
(c)
[d ] − µc[d ])(X

(c)
[e] − µc[e])]σ−2

c[d ]σ
−2
c[e]

We first need to estimate φ

Common approach: (Bertrand and Goupil, 2000; Billard and Diday, 2003)

I Assume uniformity within classes: φc is uniform density;

I Example: αc = (αc,l , αc,u) the upper and lower bounds of an interval

• µ̂c =
αc,l+αc,u

2 , σ̂2
c =

(αc,u−αc,l )
2

12
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Estimating the within-symbol density φc (2)

Our approach: Borrowing information from adjacent symbols

I Attribution of a realisation to a class is random:
Λx ∈ {1, . . . ,C} with d.f. Hx , indicates the list of symbols in which an
observation x could have been aggregated in.

I Redefine φ (density of X given S) as

φ(x) =

∫
D(Λx )

fX |S=s′(x)dHx(λ)dλ

where s ′ denotes the set of symbols given that the observation x is
assumed to be grouped in the λ-th class.

If an observation x can only be associated to a unique symbol sc then Hx

is a Dirac delta function and φ(x) = fX |S=s′(x).

I The density of an observation given a symbol sc is given by

φc(x) =
1{x ∈ sc}φ(x)

P sc
H

, P sc
H =

∫
Υc

φ(x)dHx(c)dx .
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φc for interval-valued data

I sc : D-dimensional intervals with αc = (αc,l , αc,u) and Υc = [αc,l , αc,u]

I If x is in a region where some intervals from the set s overlap, then Λx

has a discrete outcome λ, a subset of {1, . . . ,C}

Hx(λ, c) =
nc∑
a∈λ na

, for all c ∈ λ.

I We can derive that:

φ(x) =
C∑

c=1

nc
N|Υc |

1{x ∈ Υc},

I Split the range of x into a grid of subintervals denoted by υb with
b = (b1, . . . , bD) and bd = 1, . . . , (2C + 1); d = 1, . . .D

The normalising term P sc
H = mc(1) where

mc(f (x)) =

∫
Υc

f (x)φ(x)dHx(c)dx

=
1

N

C∑
c′=1

nc′

|Υc′ |

(∑
b

1{υb ⊂ Υc′}Hb(λ, c)

∫
υb

f (y)dy

)
,
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φc for interval-valued data

'

&

$

%

The estimates of the mean, variance, skewness and correlation within an
interval c are obtained using the density φc and are given as follows

µ̂cd =
mc(x[d ])
mc (1)

, σ̂2
cd =

mc

(
x2

[d ]

)
mc (1)

− µ̂2
cd ,

γ̂cd =
mc

(
x3

[d ]

)
mc (1)σ̂3

cd
− µ̂3

cd

σ̂3
cd
− 3 µ̂cd

σ̂cd
, ρ̂cde =

mc(x[d ]x[e])
mc (1)σ̂cd σ̂ce

− µ̂cd µ̂ce
σ̂cd σ̂ce

,

for d = 1, . . . ,D.
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φc for histogram-valued data

I sc : D-dimensional histogram bins with nc = αc =
∑N

n=1 1{xn ∈ Υc} and
Υc =

(
(y 1

c1−1, y
1
c1

)× · · · × (yD
cD−1, y

D
cD )
)
.

I Assume the marginal bin width to be equal and given by
δd = yd

cd − yd
cd−1 ∀cd , d s.t. the area of each bin is |Υc | =

∏D
d=1 δd .

I Choice of the bin locations Υc is arbitrary and other histograms could
have arisen by shifting the bin locations by up to half of their width to
the left or to the right.

I New bin locations Υ′ = Υ + u where u = (u1, . . . , uD),

ud ∼ U
(
− δd

2
, δd

2

)
.

I Λx : the bin Υ in which x could have been aggregated to, is now a
continuous as the set of outcomes contains all the shifted bins Υ′ that
will include x .

Hx(Υ′c) =
1∏D

d=1 δd
1{x ∈ Υ′c}

I Assuming that histogram bins can be shifted relates to the ideas of
Heitjan and Rubin (1991)
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Examples�



�
	N = 2000 draws from the Skew-Normal distribution.

• C min/max intervals

I Classical estimates and 95% CI (Solid black)

I Borrowing/Not borrowing information (Solid grey/Dotted black)

I Billard and Didday (2003) histogram estimator of intervals by partitioning,
borrowing (Dotted grey) and not borrowing information (Dashed grey)
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Examples�



�
	N = 2000 draws from the Skew-Normal distribution.

• 1 Histogram with C equal bins

I Classical estimates and 95% CI (Solid black)

I Borrowing/Not borrowing information (Solid grey/Dotted black)
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Discussion

I A new non-parametric approach to estimate statistics presented in the
general framework of Estimating Equations

I Proposal to borrow information from neighbours to get a sense of the

dependence:

• Borrow lots of information = low dependence
• Borrow no information = dependence

I Not always necessary: e.g. mushroom dataset analysed in de A Lima
Neto et al. (2011)
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THANK YOU

Manuscripts:

I Whitaker, Beranger & Sisson (2020). Estimating Equations for data summaries.

Available very soon!

I Beranger, Lin & Sisson (2018). New models for symbolic data.

https://arxiv.org/pdf/1805.03316.pdf

I Whitaker, Beranger & Sisson (2019). Composite likelihood methods for
histogram-valued random variables.

https://arxiv.org/pdf/1908.11548.pdf

Contact:
B.Beranger@unsw.edu.au
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