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Introduction

o Interest in the extremes of a stochastic process X(s),s € S.
E.g. X(-) measures the amount rainfall at locations over Florida

° Model the dependence structure in spatial extremes
e What characterises an extreme event? — Tailored approach

e Focus on asymptotic dependent processes: and

In this talk
1. Establish theoretical conditions for max-stable and r-Pareto models to

have a continuous exponent measure
2. Derive two new max-stable and r-Pareto models
3. Provide a fast inference methodology using spectral likelihoods

2/21



Modelling framework for max-stable and r-Pareto processes
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Max-stable processes

A max-stable process with unit Fréchet margins can be characterized as
o0
Z(s) = supR;W(s), s € S,
i=1

where Ry, Ra, . . ., are the points of a PPP on (0, co) and Wi (s), Wa(s), . . .,
are independent copies of a stochastic processes W(s) on S with unit mean.

The exponent measure restricted onto ]RE’r is given by
k ([0,x]°) = / 1—Pr(W e [0,xr])dr, xe€Q,
0

where W = (W(s+),...,W(sp))" and @ =R? \ {0}.

The distribution function can be expressed as

G(x) = exp {—k([0,x])} = exp {-V(x)} .
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Max-stable processes

Let Bp = {1,...,D} and By = {b1,...,bx} C Bp, where by < --- < by.
Let Qp, = {x € Q:x; = 0if j ¢ Bi} such that:

0 0Q = {Qp,,VBcand k = 1,...,D — 1} represents the boundaries of €,
e 0° = Q\ 09 denotes the Interior of Q.

Important

Depending on the choice of W, the exponent measure k can put mass on
both 02 and Q° with the intensity function on each subspace Qg,

v
lim —Vg(x), Vg =—"0"
x;—)!),ngBk 6. (x) B Oxp, ... Oxp,
On °, it can be expressed as x(x) = —Vp,(X), where the function « is

referred to as the intensity function of the max-stable process.
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Max-stable processes - Inference

Full likelihood:

Composite likelihood:

Stephenson-Tawn likelihood:

Spectral likelihood

If data € MDA(Z) then can be approximately treated as points of a PPP
with measure k(-). For a model with parameter 0, the log-likelihood is

la(0; X1, ..., %X,) X Z log k (xi; 0) .

ie{m:||Xml|1>u}
for some high enough threshold u.
This requires convergence of:

X to the max-stable process Z by taking pointwise maxima.
X to the Poisson point process.
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r-Pareto processes

Definition

Assuming the process X with unit Pareto margins satisfying
limy_o UPr(X/u € B) = k(B), VB C C"(S), then the limiting process

= . X(s)

2(s) = im B ((x(e).s e 81>
defines a simple r-Pareto process on A, = {f € C*(S) : r(f) > 1} with
probability measure k(- N A;)/k(A,).

The finite dimensional density is therefore

“(X) D
ey XEA

where & is the intensity function and AP is the set A, restricted to D

dimensions.
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r-Pareto processes - Inference

The log-likelihood is thus
KR (Z,'; 9)
bp (05X1,...,%Xy) = | |
O X) = >, log <K(A,;0)>
ie{m:r(xm)>u}
where z; = X;/u represent the realizations of the r-Pareto process.

Important

» k (A; 8) involves integration over R2, — intractability
e de Fondeville & Davison (2018):

+ Simplifications for specific choices of r(-).
* Score matching.

o r(x) = ||x||s = spectral likelihood.

o If the exponent measure k has discontinuities (presence of mass on 9.AP),
—— Inference requires evaluation of — Vg, (x).

+ Restriction to the Brown-Resnick models
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Theoretical & methodological results
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Ensuring continuous exponent measures

Theorem 1

Consider the max-stable process {Z(s),s € S} defined at D locations and
assume the partial derivatives of the function V exist.
The intensity function on 0f2 is zero almost everywhere if and only if the

conditional probability of W satisfies
PI’(WEk = Oka | WBk :XBk) = O7 Vke {1,...7D— 1}, X, > Ok.

2

Brown-Resnick: W = exp (W — %), with W a centered Gaussian process

skew extremal-t : W = max(W",0) with W a skew-normal process, v > 0.
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Extending current classes of max-stable and r-Pareto models

Assume Y(s) is a centred skew-normal process with scale matrix X

a) skewed Brown-Resnick: Let W(s) = exp {Y(s) — a(s)} with slant
parameter o, and a(s) = log E [exp {Y(s)}].

b) truncated extremal-t: Let W(s) = Y(s)”/a(s), with v > 0,
Y(s) = Y(s)|Y(s) > 0, Y(s) has unit variances and a(s) = E [¥(s)"].

The sBR model has a non-stationary dependence structure.
The intensity of the truncated extremal-t is somewhat difficult to compute...

Removal of the mass on 92 increases the dependence strength
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Improved inference for r-Pareto models

Where does the idea come from?

[Dombry, Legrand & Opitz (2024)] Using rejection sampling, one can
generate samples from a r-Pareto process with risk functional r, from
samples of a r-Pareto process associated with risk functional ry as long as
Mry(-) > ra(-),M > 0.

Observations i € {m : r(xp,) > u}

use the likelihood of the L4-Pareto process to make inference
about any r-Pareto process with a different risk functional by choosing a high
threshold u > M.

This particularly applies to L, norms, p > 1, since L, bounds L4 for finite p.
= [ s < D2 lp, p > 1

= choose u > D'~'/P_p > 1, to infer the L,-Pareto process.

Avoids to compute the normalising constant!!
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Simulation experiements
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Spectral likelihoods vs score matching

e Generate n = 2,000 obs from the skewed Brown-Resnick model on a
15 x 15 grid (D = 225).

e Power-law semivariogram ~(h) = (h/\)? with range A = 5,10 and
smoothness ¢ = 1,1.5.

e Skewness represented through spline functions with 2 Gaussian kernel
basis functions (b, b2) = (0,0), (—1,—-2),(—1,1).

e [ and Lj risk functionals.

e An observation is considered extreme when exceeding the 95%

empirical quantile of r(X;), ..., r(X,).

¢ 300 replicates.
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Spectral likelihoods vs score matching
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Figure 1: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of 1 for the skewed Brown-Resnick r-Pareto process with Lz norm risk
functional. Black dots indicate the parameter true values.

e The spectral likelihood provides unbiased, low variability estimates.
e The score matching produces unbiased but more variable estimates.
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Spectral likelihoods vs score matching
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Figure 2: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of by for the skewed Brown-Resnick r-Pareto process with Lz norm risk
functional. Black dots indicate the parameter true values.

e Score matching estimates can become numerically unstable (cases 7—12).

o Spectral likelihood is ~5 times faster than the score matching approach
(141 versus 704 seconds on average using 3 CPU cores).
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Analysis of extreme rainfall over Florida
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Analysis of extreme rainfall over Florida

e [ocation: Tampa Bay area, Florida. Regular 2km grid with 4, 449 spatial
observations.

e Measurements: radar images recorded at 15 minute intervals between
1995-2019 during the wet season (June—September). Total n = 139, 881
images.

e Smaller version of the dataset analysed in de Fondeville & Davison (2018).
e Risk functions:

— Lo, norm: defines extremes events as locally intense rainfall events at
any location within the region

— Ly norm selects events with high cumulative rainfall over the whole
region.
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Analysis of extreme rainfall over Florida

e Brown-Resnick (BR) and skewed Brown-Resnick (sBR) with anisotropic
semivariogram.

o Skewness of sBR expressed using 4 kernels.

e Fitting using score matching and spectral likelihood.

e Brown-Resnick:
— Spectral likelihood and score matching provide consistent estimates.
— Spectral likelihood is 80% (L1 norm) and 18% (L., norm) faster.

e Brown-Resnick vs skewed Brown-Resnick:

— AIC favours the skewed Brown-Resnick for both L; and L., norms.
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Analysis of extreme rainfall over Florida
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Figure 3: Maps of bivariate empirical extremal coefficients (shading) with respect to
two different reference points, and contours of the extremal coeflicient of the fitted
sBR (dashed line) and BR (solid line) r-Pareto models with L., norm risk functional.
Black dots denote the kernel centres used in the SBR model.
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Conclusion

e Established condition ensuring the intensity function of a max-stable
process only places mass on 2°;

— No discontinuities in the associated exponent measure;
— Simplifying the evaluation of the density of the r-Pareto process.

e Likelihood-based inference can be successfully implemented via the
spectral likelihood.

e Two new models: skewed Brown-Resnick and truncated Extremal-t.

e Not presented: improved rejection sampling algorithm for r-Pareto
processes.
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