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Introduction

Broad context
• Interest in the extremes of a stochastic process X(s), s ∈ S.
E.g. X(·) measures the amount rainfall at locations over Florida

• Goal: Model the dependence structure in spatial extremes

•What characterises an extreme event? → Tailored approach

• Focus on asymptotic dependent processes: max-stable and r-Pareto.

In this talk
1. Establish theoretical conditions for max-stable and r-Pareto models to
have a continuous exponent measure
2. Derive two new max-stable and r-Pareto models
3. Provide a fast inference methodology using spectral likelihoods
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Modelling framework for max-stable and r-Pareto processes

Theoretical & methodological results

Simulation experiements

Analysis of extreme rainfall over Florida
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Max-stable processes

Definition (Schlather, 2002)
A max-stable process with unit Fréchet margins can be characterized as

Z(s) =
∞

sup
i=1

RiWi(s), s ∈ S,

where R1,R2, . . ., are the points of a PPP on (0,∞) and W1(s),W2(s), . . .,
are independent copies of a stochastic processes W(s) on S with unit mean.

The exponent measure restricted onto RD
+ is given by

κ ([0, x]c) =

∫ ∞
0

1− Pr(W ∈ [0, xr])dr, x ∈ Ω,

where W = (W(s1), . . . ,W(sD))> and Ω = RD
+ \ {0}.

The distribution function can be expressed as

G(x) = exp {−κ([0, x]c)} = exp {−V(x)} .
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Max-stable processes

Let BD = {1, . . . ,D} and Bk = {b1, . . . , bk} ⊂ BD, where b1 < · · · < bk .

Let ΩBk = {x ∈ Ω : xj = 0 if j /∈ Bk} such that:
• ∂Ω = {ΩBk ,∀Bk and k = 1, . . . ,D − 1} represents the boundaries of Ω,
• Ω◦ = Ω \ ∂Ω denotes the Interior of Ω.

Important
Depending on the choice of W , the exponent measure κ can put mass on
both ∂Ω and Ω◦ with the intensity function on each subspace ΩBk

lim
xi→0,i /∈Bk

−VBk (x), VBk =
∂kV

∂xb1 . . . ∂xbk

.

On Ω◦, it can be expressed as κ(x) = −VBD (x), where the function κ is
referred to as the intensity function of the max-stable process.
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Max-stable processes - Inference

Full likelihood: intractable!

Composite likelihood: Popular but still limited.

Stephenson-Tawn likelihood: Can be biased, moderate dimensions.

Spectral likelihood (Coles & Tawn, 1991)
If data ∈ MDA(Z) then can be approximately treated as points of a PPP
with measure κ(·). For a model with parameter θ, the log-likelihood is

`A(θ; x1, . . . , xn) ∝
∑

i∈{m:‖xm‖1>u}

log κ (xi ;θ) .

for some high enough threshold u.

This requires convergence of:
a) X to the max-stable process Z by taking pointwise maxima.
b) X to the Poisson point process.

The fact that κ can put mass on ∂Ω hinders the convergence of X =⇒ bias. 6/21



r-Pareto processes

Definition (Dombry & Ribatet, 2015)
Assuming the process X with unit Pareto margins satisfying
limu→∞ u Pr(X/u ∈ B) = κ(B),∀B ⊂ C+(S), then the limiting process

Z̃(s) = lim
u→∞

X(s)

u
|r ({X(s), s ∈ S}) > u,

defines a simple r-Pareto process on Ar = {f ∈ C+(S) : r(f) > 1} with
probability measure κ(· ∩ Ar)/κ(Ar).

The finite dimensional density is therefore

κ(x)

κ(AD
r )
, x ∈ AD

r ,

where κ is the intensity function and AD
r is the set Ar restricted to D

dimensions.
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r-Pareto processes - Inference

The log-likelihood is thus

`rP (θ; x1, . . . , xn) =
∑

i∈{m:r(xm)>u}

log

(
κ (zi ;θ)

κ (Ar ;θ)

)
,

where zi = xi/u represent the realizations of the r-Pareto process.

Important
• κ (Ar ;θ) involves integration over IRD

+, =⇒ intractability
• de Fondeville & Davison (2018):

? Simplifications for specific choices of r(·).
? Score matching.

• r(x) = ‖x‖1 =⇒ spectral likelihood.

• If the exponent measure κ has discontinuities (presence of mass on ∂AD
r ),

=⇒ Inference requires evaluation of −VBk (x).

? Restriction to the Brown-Resnick models
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Ensuring continuous exponent measures

Theorem 1 (Zhong, Sisson & Béranger, 2025)
Consider the max-stable process {Z(s), s ∈ S} defined at D locations and
assume the partial derivatives of the function V exist.
The intensity function on ∂Ω is zero almost everywhere if and only if the
conditional probability of W satisfies

Pr(WB̄k
= 0D−k |WBk = xBk ) = 0, ∀ k ∈ {1, . . . ,D − 1}, xBk > 0k .

Brown-Resnick: W = exp
(

W̃ − σ2

2

)
, with W̃ a centered Gaussian process

=⇒ Condition satisfied

skew extremal-t : W = max(W̃ν , 0) with W̃ a skew-normal process, ν > 0.
=⇒ Condition NOT satisfied
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Extending current classes of max-stable and r-Pareto models

Theorem 2 (Zhong, Sisson & Béranger, 2025)
Assume Y(s) is a centred skew-normal process with scale matrix Σ.

a) skewed Brown-Resnick: Let W(s) = exp {Y(s)− a(s)} with slant
parameter α, and a(s) = logE [exp {Y(s)}].

b) truncated extremal-t: Let W(s) = Ỹ(s)ν/a(s), with ν > 0,
Ỹ(s) = Y(s)|Y(s) > 0, Y(s) has unit variances and a(s) = E

[
Ỹ(s)ν

]
.

=⇒ Both models have no mass on ∂Ω.

Comments:

• The sBR model has a non-stationary dependence structure.

• The intensity of the truncated extremal-t is somewhat difficult to compute...

• Removal of the mass on ∂Ω increases the dependence strength
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Improved inference for r-Pareto models

Where does the idea come from?
[Dombry, Legrand & Opitz (2024)] Using rejection sampling, one can
generate samples from a r-Pareto process with risk functional r2 from
samples of a r-Pareto process associated with risk functional r1 as long as
Mr1(·) ≥ r2(·),M > 0.

Focus: Observations i ∈ {m : r(xm) > u}

Proposal: use the likelihood of the L1-Pareto process to make inference
about any r-Pareto process with a different risk functional by choosing a high
threshold u > M.

This particularly applies to Lp norms, p > 1, since Lp bounds L1 for finite p.

=⇒ ‖ · ‖1 ≤ D1−1/p‖ · ‖p, p > 1

=⇒ choose u > D1−1/p, p > 1, to infer the Lp-Pareto process.

Benefit: Avoids to compute the normalising constant!!
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Spectral likelihoods vs score matching

Setup:

• Generate n = 2, 000 obs from the skewed Brown-Resnick model on a
15× 15 grid (D = 225).

• Power-law semivariogram γ(h) = (h/λ)ϑ with range λ = 5, 10 and
smoothness ϑ = 1, 1.5.

• Skewness represented through spline functions with 2 Gaussian kernel
basis functions (b1, b2) = (0, 0), (−1,−2), (−1, 1).

• L1 and L3 risk functionals.

• An observation is considered extreme when exceeding the 95%

empirical quantile of r(X1), . . . , r(Xn).

• 300 replicates.
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Spectral likelihoods vs score matching
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Figure 1: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of ϑ for the skewed Brown-Resnick r-Pareto process with L3 norm risk
functional. Black dots indicate the parameter true values.

• The spectral likelihood provides unbiased, low variability estimates.

• The score matching produces unbiased but more variable estimates.
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Spectral likelihoods vs score matching
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Figure 2: Violin plots for score matching (red) and spectral likelihood (blue)
estimates of b1 for the skewed Brown-Resnick r-Pareto process with L3 norm risk
functional. Black dots indicate the parameter true values.

• Score matching estimates can become numerically unstable (cases 7–12).

• Spectral likelihood is ∼5 times faster than the score matching approach
(141 versus 704 seconds on average using 3 CPU cores).
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Analysis of extreme rainfall over Florida

Data:

• Location: Tampa Bay area, Florida. Regular 2km grid with 4, 449 spatial
observations.

•Measurements: radar images recorded at 15 minute intervals between
1995–2019 during the wet season (June–September). Total n = 139, 881
images.

• Smaller version of the dataset analysed in de Fondeville & Davison (2018).

• Risk functions:

→ L∞ norm: defines extremes events as locally intense rainfall events at
any location within the region

→ L1 norm selects events with high cumulative rainfall over the whole
region.
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Analysis of extreme rainfall over Florida

Modelling:

• Brown-Resnick (BR) and skewed Brown-Resnick (sBR) with anisotropic
semivariogram.

• Skewness of sBR expressed using 4 kernels.

• Fitting using score matching and spectral likelihood.

Outcomes:

• Brown-Resnick:

→ Spectral likelihood and score matching provide consistent estimates.

→ Spectral likelihood is 80% (L1 norm) and 18% (L∞ norm) faster.

• Brown-Resnick vs skewed Brown-Resnick:

→ AIC favours the skewed Brown-Resnick for both L1 and L∞ norms.
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Analysis of extreme rainfall over Florida

Figure 3: Maps of bivariate empirical extremal coefficients (shading) with respect to
two different reference points, and contours of the extremal coefficient of the fitted
sBR (dashed line) and BR (solid line) r-Pareto models with L∞ norm risk functional.
Black dots denote the kernel centres used in the sBR model.
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Conclusion

• Established condition ensuring the intensity function of a max-stable
process only places mass on Ω◦;

→ No discontinuities in the associated exponent measure;

→ Simplifying the evaluation of the density of the r-Pareto process.

• Likelihood-based inference can be successfully implemented via the
spectral likelihood.

• Two new models: skewed Brown-Resnick and truncated Extremal-t.

• Not presented: improved rejection sampling algorithm for r-Pareto
processes.

THANK YOU

n https://arxiv.org/pdf/2407.13958
R B.Beranger@unsw.edu.au 21/21

https://arxiv.org/pdf/2407.13958
mailto:b.beranger@unsw.edu.au

	push0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=popModelling framework for max-stable and r-Pareto processesbluepush0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=poptowidthheightdepth
	push0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=popTheoretical & methodological resultsbluepush0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=poptowidthheightdepth
	push0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=popSimulation experiementsbluepush0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=poptowidthheightdepth
	push0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=popAnalysis of extreme rainfall over Floridabluepush0.13725 0.2157 0.23137 rg 0.13725 0.2157 0.23137 RG=poptowidthheightdepth

