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Motivation

Big data −→ small (symbolic) data

General statistical questions:

• How to summarise a complex & very large dataset in a compact

manner while retaining maximal relevant information in original dataset?

• How to do statistical analysis using symbolic data? What

properties do the estimators have?

Useful for: Data storage, computational efficiency, data privatisation,

data with non-standard form

In this talk

1. Present a general framework for data analysis through summaries

2. Asymptotic results (Prosha’s work)

3. Design of histogram aggregation functions (Hakiim’s work)
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One possible approach to modelling aggregated data

(Beranger, Lin & Sisson, 2023)

Define S = π(X1:n) : [X ]n → S such that x1:n 7→ π(x1:n) then,

L(S |θ) ∝
∫
x

g(S |x , ϕ)L(x |θ)dx

where

• L(x |θ) – standard, classical data likelihood

• g(S |x , ϕ) – explains mapping to S given classical data x

• L(S |θ) – new “symbolic” likelihood for parameters of classical model

Gist

Fitting the standard classical model, when the data are viewed only

through symbols S

Example: No generative model L(x |θ)
• g(S |x , ϕ) = g(S |ϕ) ⇒ L(S |θ) = g(S |ϕ)
• Directly modelling symbol ⇒ (Le Rademacher & Billard, 2011)
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Random bin histogram

Assume some fixed k1, . . . , kB

Aggregation:

S = π(X1:n) :Rd×n → S = {(a1, . . . , aB) ∈ RB : a1 ≤ · · · ≤ aB} × N

x1:n 7→ (x(k1), . . . , x(kB ), n)

Likelihood

Ln(s|θ) = n!
B∏

b=1

f (sb|θ)
B+1∏
b=1

(F (sb|θ)− F (sb−1|θ))kb−kb−1−1

(kb − kb−1 − 1)!
.

Key points:

• When B = 2, k1 = l and k2 = u with l , u = 1, . . . , n; l ̸= u

=⇒ random intervals.

• Can recover classical likelihood if B = n =⇒ L(s|θ) = f (x |θ).
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Convergence of summaries

Setting:

Take random intervals, i.e., random bin histogram with B = 2, k1 = l ,

k2 = u, and aggregation function π(X1:n) = (X(l),X(u)).

Things to consider:

Conditions on the sequences 1 ≤ ln ≤ un ≤ n are needed to ensure

asymptotically nondegenerate intervals: ln/n → l0 and un/n → u0.

Approach:

Order statistics can be obtained from quantiles of the empirical

distribution function (van der Vaart, 1998 )
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Convergence of summaries

Let Q ∈ P be a continuous distribution with empirical measure µn

Interval-valued aggregation

Let P =
{
(l , u) ∈ R2 : 0 < l ≤ u < 1

}
and R2

⪯ =
{
(a, b) ∈ R2 : a ≤ b

}
r :P × P → R2

⪯

(Q, (l , u)) 7→
(
Q−1(l),Q−1(u)

)
Accordingly, the quantiles of µn are r(µn, (l , u)) =

(
X⌈nl⌉,X⌈nu⌉

)
.
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Convergence of summaries

Convergence

The random interval Rn(l , u) := r(µn, (l , u)) converges uniformly in

probability to R∞(l , u) := r(Q, (l , u)).

Extensions

• Random rectangle (interval-valued aggregation to Rd):

Rd
n converges weakly to Rd

∞
• Random histograms:

Hb
n converges uniformly almost surely to Hb

∞.

• Two distribution-valued aggregations with similar convergence

properties
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Convergence of the likelihood

Denote Sn = πn(X1, . . . ,Xn) = π(µn) , such that in the interval example

Sn(ω) = Rn(l , u)(ω)

1 aggregate ⇒ the limit of the likelihood Ln is determined by the limit

of the sequence of densities fSn .

Suppose we fit the model Pθ, therefore

⋆ µn → Pθ weakly ⋆ Sn → π(Pθ) in probablity

Limit likelihood

For some true θ0 ∈ Θ, we then get:

L∞(θ, ω) = lim
n→∞

fSn(Sn(ω))

= lim
n→∞

fπn(X1,...,Xn)(Sn(ω))

= δ(π(Pθ0)− π(Pθ))
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Convergence of the likelihood

Convergence

1. The summary likelihood Ln → L∞ uniformly in Θ in probability.

2. The MLE θ̂n → θ0 in probability and is a consistent estimator.

Extension

Convergence can be established for multiple data summaries (under some

assumptions)

Summary

• As we get more distributions, and data per distribution, the likelihood

will consistently estimate θ0.

• Interest is now in the rate this happens (so we can design distributions

with the most efficient rate).
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Illustrative example

Generate 1, 001 samples from N (10, 1).

Aggregation into 4 bin histograms with bins based on order statistics

Fit the true model. Repeat 1, 000 times.

k = (100, 200, 300) k = (400, 500, 601) k = (100, 500, 601)

µ : 9.15(1.18) µ : 10.00(1.81) µ : 10.00(0.81)

σ : 0.14(1.36) σ : 0.41(3.09) σ : 0.09(0.94)
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Statistical decision theory

Let θ ∈ Θ ⊂ Rp be some unknown parameter of interest and d ∈ D be

some decision.

A loss function L(θ,d) measures the consequence of each decision d,

e.g., quadratic loss:

L(θ,d) = (θ − d)⊤Q(θ − d)

This is not available since θ is unknown so we refer to the expected loss

In the Bayesian framework, take some prior p(θ), the best belief about

the distribution of θ is the posterior p(θ|s).

Posterior expected loss

ρ(p(θ|s),d) ≡ Eθ|s [L(θ,d)] =

∫
ΘΘΘ

L(θ,d)p(θ|s)dθ,
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Statistical decision theory

Take Q = Ip, then d∗ = argmind∈D ρ(p(θ|y),d) = Eθ|s [θ] and

ρ(π(θ|s),d∗) =
p∑

i=1

Eθi |s

[(
θi − Eθi |s [θi ]

)2]
=

p∑
i=1

Vθi |s(θi ).

Optimal design

An optimal symbolic data design minimises the minimised posterior

expected loss (MPEL) function, s∗ = argmins ρ(p(θ|s),d∗)
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Experiment: where to put the bins of a histogram?

Setup

True model: Y ∼ N (µ = 50, σ = 17).

n = 201 observations;

B = 2 (3 bins) with symmetric quantiles;

Compute the posterior Loss for varying quantiles;

Repeat 50 times (expensive!)
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Experiment: where to put the bins of a histogram?

For a normal distribution, the suggests to use the 16 and 84% quantiles.

More (non-symmetric) quantiles:

B = 2 B = 3 B = 4 B = 5

(0.14,0.85) (0.09,0.52,0.91) (0.07,0.32,0.74,0.95) (0.05,0.22,0.52,0.79,0.96)

17/18



Summary(!)

• Likelihood-based framework to fit model through summaries;

• Limit results ensuring the convergence of the summaries and the

likelihood; Estimators have good properties: consistent!

• Bayesian framework for summary design.

THANK YOU

� B.Beranger@unsw.edu.au
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