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Motivation

Big data — small (symbolic) data

e How to in a compact

manner while retaining maximal relevant information in original dataset?

e How to do using symbolic data? What

do the estimators have?

Useful for: Data storage, computational efficiency, data privatisation,

data with non-standard form

In this talk
1. Present a general framework for data analysis through summaries

2. Asymptotic results (Prosha's work)
3. Design of histogram aggregation functions (Hakiim's work)



A possible approach to modelling aggregated data
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One possible approach to modelling aggregated data
(Beranger, Lin & Sisson, 2023)

Define S = w(Xy.p) : [X]" = S such that xq., — 7(x1.,) then,

L(5]6) o /g(5|x,¢5)L(x|9)dx
where

e [(x|@) — standard, classical data likelihood
e g(S|x, ¢) — explains mapping to S given classical data x
o [(5]6) — new “symbolic” likelihood for parameters of classical model

Fitting the standard classical model, when the data are viewed only
through symbols S

Example: No generative model L(x|6)

* g(S|x,9) = &(Sl¢) = L(S]0) = g(S|¢)
e Directly modelling symbol = (Le Rademacher & Billard, 2011)
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Random bin histogram

Assume some fixed ki, ..., kg

S:TF(XL,,) ZRdXH%S:{(al,...,QB)ERBZalﬁ'-'SQB}XN

X1:p > (X(kl)7 oy X(kg)s n)

Likelihood

= Bi1 ko—kp_1—1
) (F(ssl6) — F(sp116))* "
L,(s|0) = n! };[1 f(sb/0) 11;[1 (ko — kp_1 — 1)! ’

e When B=2, kg =/land kp =uwith Lu=1,....n;/#u
— random intervals.

e Can recover classical likelihood if B = n = L(s|0) = f(x|0).
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Asymptotic results
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Convergence of summaries

Take random intervals, i.e., random bin histogram with B = 2, ky =/,
ko = u, and aggregation function m(X1.,) = (X1, X())-

Things to consider:

Conditions on the sequences 1 < [, < u, < n are needed to ensure
asymptotically nondegenerate intervals: I,/n — ly and u,/n — u.

Order statistics can be obtained from quantiles of the empirical
distribution function (van der Vaart, 1998 )
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Convergence of summaries

Let Q@ € P be a continuous distribution with empirical measure p,,

Interval-valued aggregation

Let P={(/,u)eR*:0</<u<1}andR% = {(a,b) €R?:a< b}

rPxP — sz
(@ (hu) = (@711, QH(uw)

Accordingly, the quantiles of i, are r(pn, (I, u)) = (Xins Xpu)-
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Convergence of summaries

Convergence

The random interval R,(/, u) := r(un, (I, u)) converges uniformly in
probability to Ry (/, u) := r(Q, (/, u)).

e Random rectangle (interval-valued aggregation to R?):
R9 converges weakly to RY
e Random histograms:
H® converges uniformly almost surely to H2..
e Two distribution-valued aggregations with similar convergence
properties



Convergence of the likelihood

Denote , such that in the interval example
Sn(w) = R(1, u)(w)

IREY{EWN — the limit of the likelihood L, is determined by the limit
of the sequence of densities fs, .

Suppose we fit the model Py, therefore
* i, — Py weakly * S, — 7(Py) in probablity

Limit likelihood

For some true 6 € ©, we then get:

Loo(0,w) = lim fs (Sp(w))

n—oo

= lim £ ... x)(Sa(w))

n—oo

= 6(m(Po,) — m(Po))
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Convergence of the likelihood

Convergence

1. The summary likelihood £, — L. uniformly in © in probability.
2. The MLE 8, — 6q in probability and is a consistent estimator.

Convergence can be established for multiple data summaries (under some
assumptions)

As we get more distributions, and data per distribution, the likelihood
will consistently estimate 6.

Interest is now in the rate this happens (so we can design distributions
with the most efficient rate).
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Design of aggregation functions
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lllustrative example

Generate 1,001 samples from A/(10, 1).

Aggregation into 4 bin histograms with bins based on order statistics

Fit the true model. Repeat 1,000 times.

k = (100, 200, 300) k = (400, 500,601) k = (100,500, 601)
112 9.15(1.18) 41 - 10.00(1.81) 12+ 10.00(0.81)
o :0.14(1.36) o :0.41(3.09) o :0.09(0.94)
fy) fy) f(y)
51/—12 3 s1 sz sg 1 ICH L
y y y
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Statistical decision theory

Let 8 € © C RP be some unknown parameter of interest and d € D be

some decision.

A loss function L(6,d) measures the consequence of each decision d,

e.g., quadratic loss:

L(6,d) = (6 —d)"Q(6 — d)

This is not available since 0 is unknown so we refer to the expected loss

In the , take some prior p(@), the best belief about
the distribution of @ is the posterior p(8|s).

Posterior expected loss

plp(019).d) = Eop [L0.)) = [ L(0.d)p(015)a0,
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Statistical decision theory

Take Q =1, then d* = argmingcp p(p(0ly), d) = Egjs [0] and

w(0]s), d*) ZEQ\S[ — By [0)°] = ZVﬁls

An optimal symbolic data design minimises the minimised posterior
expected loss (MPEL) function, s* = arg ming p(p(f|s), d*)
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Experiment: where to put the bins of a histogram?

True model: Y ~ N (u = 50,0 = 17).

n = 201 observations;

B = 2 (3 bins) with symmetric quantiles;
Compute the posterior Loss for varying quantiles;
Repeat 50 times (expensive!)

Minimised posterior expected loss
5
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Experiment: where to put the bins of a histogram?
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For a normal distribution, the suggests to use the 16 and 84% quantiles.

More (non-symmetric) quantiles:
B=2 B=3 B=4 B=5
(0.14,0.85) (0.09,0.52,0.91) (0.07,0.32,0.74,0.95) (0.05,0.22,0.52,0.79,0.96)
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Summary(!)

o Likelihood-based framework to fit model through summaries;

e Limit results ensuring the convergence of the summaries and the
likelihood; Estimators have good properties: consistent!

e Bayesian framework for summary design.
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