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Rise of non-standard data forms

Standard statistical methods analyse classical
datasets

E.g. x1,...,x, where x; € X = RP
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Increasingly see non-standard data
forms for analysis.
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» Can arise as result of measurement
process
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> Blood pressure naturally recorded as
(low, high) interval
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> Particulate matter directly recorded
as counts within particle diameter
ranges i.e. histogram
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Example: Discretised data = histogram

Scatterplot with loess line
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> E.g. point (4.0, 0.0) actually lies within [3.95,4.05) x [—0.05, 0.05)

» Strong discretisation could have undesired inferential impact 4/32



Symbolic Data Analysis

> Established by Diday & coauthors in
1990s.

» Basic unit of data is a distribution
rather than usual datapoint.
e interval (a, b)
p-dim hyper-rectangle
histogram
weighted list etc.
can be complicated by “rules”

Distribattion of Height and Weight » Classical data are special case of
court symbolic data:

E.g. symbolic interval s = (a, b)
equivalent to classical data point x if
x=a=b.

Or histogram — {x;} as # bins — oo.

So symbolic analyses must reduce to
classical methods. 5/32




How do symbolic data arise?

Big data — small (symb) data
Easier to analyse (hopefully!)

Possible use in data privacy?
Individual can’t be indentified.

Statistical question:

How to do statistical analysis for this form of data? J

» Can arise naturally (measurement error):
E.g. blood pressure, particulate
histogram, truncation/rounding.

» ‘Big Data' context:

Symbolic data points can summarise
a complex & very large dataset in a
compact manner.

Retaining maximal relevant
information in original dataset.
Collapse over data not needed in
detail for analysis.

Summarised data have own internal
structure, which must be taken into
account in any analysis.
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Tick time series data
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Too much data to analyse all ticks.

Collapse data to e.g.
one histogram per day.

Analysis of histograms now tractable.
(Though method perhaps unclear.)

In general: Reduction to symbols is
question and data dependent.
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How to analyse symbolic data?

A good idea in principle, however:
» Poorly developed in terms of inferential methods.

» Current approaches:

. (means, covariances)
= Methods based on 15t/2”d moments: clustering, PCA etc.

o (e.g. regression)
= Can be plain wrong for inference/prediction.

= Limited model-based inferences

>
= Need to move beyond uniformity (Lynne Billard)

Current SDA research:
Developing practical model-based (e.g. likelihood-based) procedures for
statistical inference using symbolic data for general symbols.
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EXBﬂngIﬂOddSfbrsymbOB(mmmmma&mmgmn
SE= (51,...,5‘1)T
E.g. For random intervals [a;, bi], i=1,...,n:
> Si=(aj,bi)"
> S; = (mj,logr)T"

Then specify a standard (classical data) model for Sy,...,S,. E.g.

Problems:
> Model unstable/collapses as a; — b; (classic data)

> How to fit equivalent models for classical data to symbols?
e Fit to means? How to account for variation? etc.

v

Symbols are summaries of classical data,
e Model can only predict symbols

v

Q: How to fit models and make predictions at the level of the
classical data, based on observed symbols?
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One possible approach

Define S = 7(X1.n) : [X]Y — S such that x;.y + 7(x.y) then,

L(5]6) / £(S|x. 6)L(x|8)dx

where
> — standard, classical data likelihood
> — explains mapping to S given classical data x
> — new symbolic likelihood for parameters of classical model

Gist: Fitting the standard classical model, when the data are viewed only
through symbols S as summaries J

Example: No generative model L(x|0)

> 8(SIx,¢) = g(Sl¢) = L(S|0) = g(5]¢)

> Directly modelling symbol = existing likelihood approach
(Le Rademacher & Billard, 2011) v
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Modelling a random interval

Aggregation: S = w(Xy.y) i RNV — S = {(a1,a0) € R? : 2y < a} x N
such that xq.py +— (X(/),X(u), N).

Let s = (1,54, n) with 5; = X(y), s, = X(u) £ < v and x; ~ f(X|0):

L(s|f) /g(s\x,¢)L(x|e)dx

//(X(/) =5 & X(u) = Su) H f(x,|0)dX1,—,

J

= the joint distribution of £-th and u-th order statistics from f(x|0). v/

Symbolic — Classical check:
If s — s, = x and n =1 then L(s|0) = f(x|0). v
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Modelling a random rectangle

Aggregation 1: S =n(Xpn) : RN
S={(a1,a) €R?:a; < a}?>x{2,...,min(4,n)} x T x N such that

xi:n = ((X),is X(n),i)i=1,2: P, 1(P), N).

» p: number of points involved in constructing the rectangle

> I(p) : locations of the points (taking values in T)

For s = (Smin, Smax Sp» SI,» 1)

sl = —™ { / f(ze)dz} e,

(n _-Sp)!

Smin

> If s, =2 then s;, = (Smin, Smax) and £2 = f(Smin|0)f (Smax|0)-
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Aggregation 1:

Modelling a random rectangle

p=0.95
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Aggregation 1:

Modelling a random rectangle
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Modelling a random rectangle
Aggregation 1:

[ ]
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Modelling a random rectangle

Aggregation 2: Marginal order statistics
S=n(Xun) : RN = S ={(a1,a) €R?: a1 < a}? x N such that:

» [Sequential nesting]:
xiv = (s X 100 <5 < Kpaid < 1)),y V)

2

L(s]0) ox P(sp < X < s4)27 27, (51.1) Fx (Su1) Hp,-(s/)q,-(su).
i=1
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Modelling a random rectangle

Aggregation 2: Marginal order statistics
S=a(Xen) RPN 5 S = {(a1,a2) € R?: a; < a2}2 x N such that:

» [Sequential nesting]:

1-Up—l -1 n-u;-1

X(u).2

X(i).2

X()1 X(u)1

X1 X(w).1
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Modelling a random rectangle
Aggregation 2: Marginal order statistics
S=7n(Xen) : RN — 8 = {(a1,a) € R?: a3 < a}? x N such that:

» [Sequential nesting]:
X1:N (((X(/ 2 X(up) ) \{X J <X < X jid < i}>;:1,2’N)'

2

L(s]0) ox P(sp < X < 54)27 27, (511) Fx (Su1) Hp;(s,)q,-(su).
i=1

where pi(sr) = Fx,(s11)" !, qi(su) = (1 = Fx(su,2))" ™

» [lterative segmentation]:
X1:N
(Gl < x50 < x5 > Xpsid < 1),y 5o N)
3

L(s]60) ox P(s11 < X1 < su.1)" ", (51.1) Fxy (1) Hp;(s,)q;(s,,).
i=2

15/32



Modelling a random rectangle
Aggregation 2: Varginal order statistics
S=na(Xen) RN 5 S ={(a1,a) € R?: a; < a2}%2 x N such that:

> [lterative segmentation]:

n-u;—up

X(u).2

up-1

X(up).1
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Modelling a histogram with random counts

Aggregation: S = m(Xy.y) : RN — 8 = {0,... N}B"*E’ such that
X1:N — (27:1 H{Xi S Bl}a RS 27:1 H{Xi € BB})

n=1000, bins=11 > Assume some fixed bins

Bi,...,Bg and let

9. s=(s1,...,58) , > ,Sb=n
g
’ » If the X; are iid then likelihood is
g S multinomial
3
- B
) L(s[0) o H
L where p,(7) o [, F(z]0)dz under
y - b
the model. v

> More complicated if data are not iid (Zhang, Beranger & Sisson,
2019)
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Modelling a histogram with random counts

Can recover classical likelihood as B — oo

I|m L(5]0) x Bllm sB' H [/ f( z|9)dz} = L(X1,..., Xn|0)

0051

So recover classical analysis as we approach classical data. v/

Can show that with a sufficient number of histogram
bins can perform analysis arbitrarily close to analysis with full
dataset.

Computationally scalable: Working with counts not computationally
expensive latent data.
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Modelling a histogram with random bins

Aggregation:
S=n(Xun) : RN S = {(31,...,35) €RB:a <---<ag} xN
such that x1.v — (X(,), - - - > X(ks), V) then

(F(s6]0) — F(sp_10)) 171
L(s]0) —me 5]0) H (f( |zkb —(kb—1|_))1)! .

> Fixed

» When B=2, kg =1land kp =uwith Lu=1,....n;/ #u

» Symbolic — Classical check: if B =N = L(s|0) = f(x|0). v
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Density

0.3

0.2

0.1

0.0

Fitting a GEV

n=1000, bins=11

v

v

- B p o §
tandard GEV
77 Symbole GEY 5 2977 7.675 4.091
10 1.385 1.030 0.916
20 1.278 0.762 0.682
1000 1.277 0.809 0.662
Standard | 1.268 0.725 0.547

Use R's hist command to construct histograms, n = 1,000

Use fgev command in evd package for standard approach

Accuracy increases with more bins

Accuracy close to using full dataset with only 20 bins
(No real advantage to 1000 bins over 20)
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Fitting a GEV

n 100 1K 10K 100K 1M  10M  100M
Standard 0018 0.047 0431 2860 ()  (+) ©)
Symbolic (total) | 0.060 0.062 0.062 0.107 0.247 2217 42.99%4
Symbolic (hist) | 0.055 0.057 0.059 0.104 0243 2209 42.043
Symbolic (mle) | 0.005 0.005 0.004 0.003 0.004 0.007 0.051

» Standard initially faster than symbolic for small datasets ~ 1K

» Symbolic scales much better > 1K

> x = fgev crashed on my laptop!

» However, most time for symbolic on histogram construction

> Actual symbolic optimisation super fast (obviously)

> Possible laptop caching problems around 100M

> Faster ways to construct histogram counts than hist for really large
datasets (e.g. map-reduce using DeltaRho)
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Random rectangles

» SDA literature does not use as much information, best likelihood
model:

- Z Z qull((smim Smax; tpa tl,,v n); G)P(Sp = tpv Slp - tlp; 9)7

tp t/p

» Other alternative: » Leqn with S, = 24d.

> Data: m = 50 classes of n. = 5,10, 50,100 obs from N>(0, Xo)

po = (2,5)", diag(Xo) = (03 1,0%,) = (0.5,0.5) and correlation
00 =0,0.5.00.

T = 1000 replicates.
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Random rectangles

ne 5 10 100 1,000 100,000
po=00 L, —0004 —0003 0001 0.000  0.000
(0.056) (0.032) (0.015) (0.008) (0.004)
Ly —0.055 —0.018 —0.009 —0.005  —*
(0.399) (0.029) (0.016) (0.008)  —*
Len —0.009  0.001 —0.001  0.011  0.000
(0.087) (0.082) (0.100) (0.108) (0.004)
05 Ls
(0.048) (0.038) (0.016) (0.009) (0.021)
Lo —a
(0.067) (0.049) (0.017) (0.012)  —*
Len 0508  0.503 0494 0488  0.327
(0.058) (0.055) (0.083) (0.076) (0.259)
09 Ls
(0.055) (0.060) (0.034) (0.016) (0.036)
Lo —a
(0.010) (0.010) (0.355) (0.020)  —*®
Len 0902 0901 00900  0.900  0.902
(0.017) (0.014) (0.016) (0.016) (0.015)
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Random rectangles

» Data: m = 20 classes of n. = 60 obs from Na(p0, Xo)
po = (2,5)", 08, = 0§, = 0.5 and correlation pg = 0.7.

Orders (/, u) o1 P oo
Lnx ((6,5),(55,35)) 04992  0.6933  0.5050
(0.0255)  (0.0054)
((16,6), (45,24))  0.4981  0.6402  0.5043
(0.0273)  (0.0107)
((20,5),(41,16)) 0.4991  0.6396  0.5054
(0.0256) (0.0129)
Liwx ((6,3),(55,3)) 04993  0.7130 _ 0.4900
(0.0067) (0.0037)
((16,10), (45,2)) 0.4981  0.7037  0.4806
(0.0039)  (0.0064)
((20,7), (41,14)) 0.4993  0.7465  0.4871
(0.0128)  (0.0037)

» Smaller sd for first conditioned component
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Random rectangles

> Data: m = 20 classes of n. = 60 obs from Na(p0, Xo)
=(2,5)", 0§, = 03, = 0.5 and correlation py = 0.7.

Orders (/, u) o1 p o2
Lanx  ((6,5),(55,35)) 0.4992 0.6933 0.5050
(0.0019) (0.0054)
((16,6), (45,24)) 0.4981  0.6402  0.5043
(0.0021) (0.0107)
((20,5),(41,16))  0.4991  0.6396  0.5054
(0.0027) (0.0129)

Lisx ((6,3),(55,3)) 04993  0.7130  0.4900
(0.0019) (0.0067) (0.0037)

((16,10), (45,2)) 0.4981  0.7037  0.4806
(0.0021) (0.0039) (0.0064)

((20,7),(41,14))  0.4993  0.7465  0.4871
(0.0027) (0.0128) (0.0037)

» is provide more information about joint upper and lower values
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v

Peer-to-peer loan data

Data from the U.S. peer-to-peer lending company LendingClub
available from the Kaggle platform (https:
//www.kaggle.com/wendykan/lending-club-loan-data)

887,373 loans issued during 2007-2015

Grade, from Al (least risky) to G5 (most risky), based on risk and
market conditions, which defines the interest rate

Analysis on full data, using reference SDA technique (LRB) and ours
Aggregation of income data per risk group into a
X,'j ~ N(,u,',O'?) and X,J ~ SN(/J,,',U,-Q,’Y,')

oy~ T3(co + c1i + c2i?,72)
o 07 ~ IG(a, )
o 5~ N(n,e)
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Peer-to-peer loan data

Loan grade
Loan grade

03 04 05 06 07 08 09
Variance

Figure: Fitted group means and variances (solid lines) when the underlying
distribution is Normal, using the classical (red) and symbolic (green) likelihoods
and the LRB model (blue). Dashed lines indicate pointwise 95% confidence
intervals. Points denote /i; and &2 under the classical and symbolic models,
and the sample mean and variance of each grade histogram for the LRB model.
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Peer-to-peer loan data

Loan grade

114 03 04 05 06 07 08 09
Variance

Figure: Fitted group means and variances (solid lines) when the underlying
distribution is Skew-Normal, using the classical (red) and symbolic (green)
likelihoods and the LRB model (blue). Dashed lines indicate pointwise 95%
confidence intervals. Points denote fi; and 6% under the classical and symbolic
models, and the sample mean and variance of each grade histogram for the
LRB model.
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14

Sample Quantiles of In-income
12

10

Peer-to-peer loan data

Loan grade €3 Loan grade C3 Loan grade C3

o2
02 03 04 05 06 07 08

02 03 04 05 06 07 08

5

9 10 11 12 13 10.95 11.00 11.05 1110 10.95 11.00 11.05 1110
Fitted Quantiles of In-income K H

Figure: Predictive inference for loan grade C3 (ncs = 50, 161).

Table: Mean (s.e.) likelihood evaluation times (seconds x1073).

Normal Skew-Normal

Classical 3.886(0.478) 90.754(0.097)
New Symbolic 1.551(0.045) 12.721(0.034)
LRB 0.498(0.001) 0.476(0.001)
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Summary

Based on fitting underlying (classical) model

e Radically different approach to existing SDA methods
e Ours is much better!

Views latent (classical) data through symbols
Recovers known existing models for symbols but is more general

Works for more general symbols than currently in use

Implement more sophisticated statistical techniques using Symbols
(Tom’s PhD)

Characterise impact of using symbols on accuracy
e Trade-off of accuracy vs computation
Design of symbols for best performance
e Histogram setting: How many bins? Bin locations?
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How to design symbolic data?

(a) Regular discretisation (b) Quantile discretisation (c) Tails focused discretisation

How to design symbols to most efficiently represent dataset without
(much) loss of critical information?

E. g. Linear regression with 10 million datapoints.
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» New models for symbolic data. Beranger, Lin & Sisson.
https://arxiv.org/pdf/1805.03316.pdf.

» A composite likelihood based approach for max-stable processes
using histogram-valued variables. Whitaker, Beranger & Sisson. In

prep.

B.Beranger@unsw.edu.au
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