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Motivation

World Health Organisation:

† Air pollution kills 7 million people worldwide each year

Regulated emissions of pollutants (short-term concentrations):

I particulate matter (PM10): daily average of 50µg/m3

I nitrogen dioxide (NO2): daily average of 200µg/m3

Alert notice can be twice as high�



�
	Estimating extreme pollutant concentrations conditional on meteorological

variables to understand the evolution of air pollution at high levels.
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Motivation (2)

Assess high quantiles with low probabilities p with p < 1/n

Focus on X ∈ IRd
+ with d = 1, 2.

• d = 1: Extreme quantile Q(p) := F←(1− p)

• d = 2: Extreme quantile region Q =
{

x ∈ IR2
+ : f (x) ≤ α

}
, α > 0

P(Q) = p for some very small p

• EV approach assumes n→∞ for asymptotic models to be used
Approximate Q by Qn.
Approximate Q by Qn, P(Qn) = pn → 0, n→∞.
Assumption: np → c ∈ [0,∞)

�� ��Quantify the uncertainty around the estimate of extreme quantiles
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Talk Outline

1. Estimating extreme quantiles

2. Inference

3. Simulation experiments

4. Analysis of extreme air pollution levels in Milan
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Estimating univariate extreme quantiles

• Let U(t) = F←(1− 1/t), t > 1 =⇒ Q(p) = U(1/p).

• Using dHF(2006, Chap. 1) U(tx)−U(t)
a(t)

t→∞−→ xγ−1
γ
, we get

Q(p) ≈ µ+ σ

(
k
np

)γ
− 1

γ
as n→∞. (1)

where a(t) ≈ σ and U(t) ≈ µ as t →∞.
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Estimating bivariate extreme quantiles
• From dHF(2006, Ch 6.1.2) we have that

t (1− F (tU1(x1), tU2(x2)))
t→∞−→ν({v ∈ IR2

+ : v1 > x1 or v2 > x2})

=

∫∫
{v1>x1 or v2>x2}

g(v)dv.

• We define the basic density function q by

tU1(t)U2(t)f (tU1(x1), tU2(x2))
t→∞−→ (γ1γ2)−1x1−γ1

1 x1−γ2
2 g(x) =: q(x).

• Following EdHK(2013) we focus on

S = {x ∈ IR2
+ : q(x) ≤ 1} =

{
x ∈ IR2

+ : r ≥ q−1
∗ (w),w ∈ [0, 1]

}
where q∗(w) = q(w , 1−w)

− 1
1+γ1+γ2 is called the angular basic density function.

• Inflate the basic set S into an extreme set:

Q̃n ≈


µ1 + σ1

(
kν(S)x1

np

)γ1

− 1

γ1
, µ2 + σ2

(
kν(S)x2

np

)γ2

− 1

γ2

 : (x1, x2) ∈ S

 .
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Inference: Univariate case

• Use a censored likelihood approach:

L(y1:n; θ) =
n∏

i=1

L(yi ; θ), L(yi ; θ) ∝


G k/n(t; θ), if yi ≤ t,

∂
∂y

G k/n(y ; θ)|y=yi , if yi > t,

where G k/n(y ; θ) ≡ G k/n((y − µ)/σ; γ) with θ = (µ, σ, γ)>.

• Apply the adaptive (Gaussian) random-walk Metropolis-Hastings (RWMH)
algorithm of GFS(2016)
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Inference: Bivariate case (1)

• For some large threshold t = (t1, t2), we have the approximation

F (y) ≈ exp (−(z1 + z2)A(v)) , y ≥ t,

where v = z2/(z1 + z2) with zi = k
n

(
1 + γi

·−µi
σi

)−1/γi

+
, i = 1, 2.

• Model the angular density using Bernstein polynomials as in MPAV(2016).
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Inference: Bivariate case (2)

• Use a censored likelihood approach.

• Priors: η (function of polynomial coefficients βββ), p0, p1 and κ

• MCMC algorithm:
I Step 1: Margin 1
I Step 2: Margin 2
I Step 3: Dependence

- Draw proposal κ′ ∼ qκ(κ|κ(j)) and η′κ′ ∼ qη(ηκ|κ′), and compute βββ′κ′

- Compute acceptance probability

π3 = min

c
Π(κ′)

Π(κ(j))

L
(
θ

(j+1)
1 , θ

(j+1)
2 , κ′, βββ′κ′

)
L
(
θ

(j+1)
1 , θ

(j+1)
2 , κ(j), βββ

(j)

κ(j)

) , 1
 .
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Experiment: Univariate
• Generate n = 1500 obs from the Half-t with σ0 = 1 and ν0 = 1/3

• Censoring at the 90-th empirical quantile

• Prior: Π(θ) := Π(µ)Π(log(σ))Π(γ) ∝ 1/σ with σ > 0

• Run the MCMC for 50,000 iterations ⇒ burn-in 20,000 iterations

• Posterior densities of quantiles corresponding to the exceedance probabilities
p = 1/750 (light grey), 1/1500 and 1/3000 (dark grey)
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Experiment: Bivariate (1)

• Generate n = 1500 obs from the bivariate truncated-t with ρ = 0.5 and
ν0 = 2

• Same thresholds and priors on the margins

• For each posterior sample: compute q∗(w)

• Estimate the basic set S through the points
(
wq−1
∗ (w), (1− w)q−1

∗ (w)
)

• Posterior densities of quantiles corresponding to the exceedance probabilities
p = 1/750, 1/1500 and 1/3000

• Comparison with EdHK (2013) – dashed lines.
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Experiment: Bivariate (2)
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Analysis of extreme air pollution

• Air pollution levels in Milan over winter period (end Oct - end Feb)
between Dec 31st 2001 and Dec 30th 2017.

• Daily mean level of PM10 and daily maximum levels of NO2

• Interactions between pollution and temperature: µi = β0,i + β1,iz + β2,iz
2

• Threshold: marginal 90-th empirical quantile (Mean Residual Life plots)

• Quantiles associated with the probabilities p = 1/1200 (event once every 10
winters)
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Analysis of extreme air pollution (2)

• Bivariate quantile regions for p = 1/600, 1/1200 and 1/2400 at minimum
(blue), median (purple) and maximum (red) temperatures.
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Conclusion:
I Methodology to estimate extreme quantile regions

I Quantification of the uncertainty under Bayesian paradigm
I Routines available in R package ExtremalDep

I Limited to the positive reals

Manuscript:
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